Euphytica

, Volume 103, Issue 1, pp 9–15 | Cite as

The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.)

  • W. Plader
  • S. Malepszy
  • W. Burza
  • Z. Rusinowski

Abstract

Somaclonal variation in the Borszczagowski line of Cucumis sativus L. was determined for five regeneration systems: micropropagation (MP), direct leaf callus regeneration (DLR), leaf callus regeneration (LCR), recurrent leaf callus regeneration (RLCR), and direct protoplast regeneration (DPR). The frequency at which new phenotypes appeared in R1 lines and the stability of the rDNA region analysed using of five probes were investigated. MP was not subject to change, while DLR caused only infrequent changes. The highest frequency of change arose through DPR (90% of lines) and RLCR (42.8%), as opposed to 5.9% with LCR. Tetraploids were produced only in the case of LCR (4.7%) and RLCR (28%).

Cucumis sativus L. rDNA regeneration systems somaclonal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C.L. & R.L. Phillips, 1988. Genetic and cytogenetic variation in plants regenerated from organogenic and friable, embryogenic tissue cultures of maize. Crop Sci 28: 363-369.CrossRefGoogle Scholar
  2. Breiman, A., T. Felsenburg & E. Galun, 1987. Nor loci analysis in progenies of plants regenerated from the scutellar callus of bread-wheat. Theor Appl Genet 73: 827-831.CrossRefGoogle Scholar
  3. Breiman, A., T. Felsenburg & E. Galun, 1989. Is Nor region variability in wheat invariably caused by tissue culture? Theor Appl Genet 77: 809-814.CrossRefGoogle Scholar
  4. Brown, P.T.H., E. Gobel & H. Lorz, 1991. RFLP analysis of Zea mayscallus cultures and their regenerated plants. Theor Appl Genet 81: 227-232.CrossRefGoogle Scholar
  5. Burza, W., S. Malepszy & E. Rostek, 1995. An effect of simple and recurrent in vitroregeneration on cucumber inbred line under field cultivation. Horticult Sci 28 (1-2): 11-13.Google Scholar
  6. Burza, W. & S. Malepszy, 1995a. In vitroculture of Cucumis sativusL. XVIII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell, Tissue Org Cult 41: 259-266.CrossRefGoogle Scholar
  7. Burza, W. & S. Malepszy, 1995b. Direct plant regeneration from leaf explants in cucumber (Cucumis sativusL.) is free of stable genetic variation. Plant Breed 114: 341-345.CrossRefGoogle Scholar
  8. Cecchini, E., L. Natali, A. Cavallini & M. Durante, 1992. DNA variations in regenerated plants of pea (Pisum sativumL.). Theor Appl Genet 84: 874-879.CrossRefGoogle Scholar
  9. Charzynska, M., M. Banas, T. Wróblewski & S. Malepszy, 1995. Temporal and spatial development of the callus in cultured leaf explants of cucumber (Cucumis sativusL.). Intern. Conference Agrobiotechnology 95, Poznaòä 15-20 Sept., in: Biotechnologia (Suppl.) 4: 31.Google Scholar
  10. Chowdhury, M.K.U., V. Vasil & I.K. Vasil, 1994. Molecular analysis of plants regenerated from embryogenic cultures of wheat (Triticum aestivumL.). Theor Appl Genet 87: 821-828.CrossRefGoogle Scholar
  11. Dellaporta, S.J., J. Wood & J.B. Hicks, 1983. A plant DNA minipreparation, version two. Plant Mol Biol Rep 1: 19-21.Google Scholar
  12. De Paepe, R., D. Bleton & F. Gnangble, 1981. Basis and extent of genetic variability among doubled haploid plants obtained by pollen culture in Nicotiana sylvestris. Theor Appl Genet 59: 177-184.CrossRefGoogle Scholar
  13. Ezura, H., H. Amagai, K. Yoshioka & K. Oosawa, 1992. Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue cultures of melon (Cucumis meloL.). Plant Sci 85: 209-213.CrossRefGoogle Scholar
  14. Firoozabady, E., 1986. Rapid plant regeneration from Nicotianamesophyll protoplasts. Plant Sci 46: 127-131.CrossRefGoogle Scholar
  15. Koetsier, P.A., J. Schorr & W. Doerfler, 1993. A rapid optimized protocol for downward alkaline Southern blotting of DNA. BioTechniques 15 (2): 260-262.PubMedGoogle Scholar
  16. Landsmann, J. & H. Uhrig, 1985. Somaclonal variation in Solanum tuberosumdetected at the molecular level. Theor Appl Genet 71: 500-505.CrossRefGoogle Scholar
  17. Larkin, P.J. & W.R. Scowcroft, 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197-214.CrossRefGoogle Scholar
  18. Malepszy, S., 1988. Cucumber (Cucumis sativusL.). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Crops II, vol. 6, pp. 277-293. Springer Verlag, Berlin Heidelberg New York.Google Scholar
  19. Malepszy, S. & A. Nadolska-Orczyk, 1989. In vitroculture of Cucumis sativusVIII. Variation in the progeny of phenotypically not altered R1 plants. Plant Breed 102: 66-72.CrossRefGoogle Scholar
  20. Malepszy, S., W. Burza & M. Smiech, 1996. Characterization of a cucumber (Cucumis sativusL.) somaclonal variation with paternal inheritance. J Appl Genet 37: 65-78.Google Scholar
  21. Malepszy, S., W. Plader & Z. Rusinowski, 1996a. New cucumber phenotypes origin after in vitroregeneration. Horticult Sci (in press).Google Scholar
  22. Morrish, F.M., W.W. Hanna & I.K. Vasil, 1990. The expression and perpetuation of inherent somatic variation in regenerants from embryogenic cultures of Pennisetum glaucum(L.) R.Br. (pearl millet). Theor Appl Genet 80: 409-416.CrossRefGoogle Scholar
  23. Muller, E., P.T.H. Brown, S. Hartke & H. Lorz, 1990. DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80: 637- 679.Google Scholar
  24. Nadolska-Orczyk, A., S. Malepszy & S. Belz, 1989. Effect of recurrent in vitroculture on somaclonal variation. XII Eucarpia Congress, Vorträge für Pflanzenzüchtung: 26-1.Google Scholar
  25. Peschke, V.M. & R.L. Phillips, 1993. Genetic implications of somaclonal variation in plants. Adv Genet 30: 41-68.CrossRefGoogle Scholar
  26. Pierce, L.K., 1990. Review of genes and linkage groups in cucumber. Hortscience 25 (6): 605-615.Google Scholar
  27. Rietveld, R.C., R.A. Bressan & P.M. Hasegawa, 1993. Somaclonal variation in tuber disc-derived population of potato. II. Differential effect of genotype. Theor Appl Genet 87: 305-313.CrossRefGoogle Scholar
  28. Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  29. Svedlund, B. & I.K. Vasil, 1985. Cytogenetic characteristics of embryogenic callus and regenerated plants of Pennisetum americanum(L.) K. Schum. Theor Appl Genet 69: 575-581.CrossRefGoogle Scholar
  30. Torres, R.A., U. Zentgraf & V. Hemleben, 1989. Species and genus specificity of the intergenic spacer (IGS) in the ribosomal RNA genes of Cucurbitaceae. Z Naturforsch 44c: 1029-1034.Google Scholar
  31. Torres, R.A., M. Ganal & V. Hemleben, 1990. GC balance in the internal transcribed spacer ITS 1 and ITS 2 of nuclear ribosomal RNA genes. J Mol Evol 30: 170-181.PubMedCrossRefGoogle Scholar
  32. Wernicke, W. & L. Milkovits, 1986. The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-Dichlorophenoxyacetic acid. Protoplasma 131: 131-141.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • W. Plader
    • 1
  • S. Malepszy
    • 1
  • W. Burza
    • 1
  • Z. Rusinowski
    • 1
  1. 1.Department of Plant Genetics Breeding and BiotechnologyWarsaw Agricultural UniversityWarszawaPoland

Personalised recommendations