Journal of Biomolecular NMR

, Volume 10, Issue 3, pp 221–230 | Cite as

The effects of guanidine hydrochloride on the ’random coil‘ conformations and NMR chemical shifts of the peptide series GGXGG

  • Kevin W. Plaxco
  • Craig J. Morton
  • Shaun B. Grimshaw
  • Jonathan A. Jones
  • Maureen Pitkeathly
  • Iain D. Campbell
  • Christopher M. Dobson

Abstract

The effects of the commonly used denaturant guanidine hydrochloride(GuHCl) on the random coil conformations and NMR chemical shifts of theproteogenic amino acids have been characterized using the peptide seriesAc-Gly-Gly-X-Gly-Gly-NH2. The φ angle-sensitive couplingconstants, ROESY cross peak intensities and proline cis–trans isomerratios of a representative subset of these peptides are unaffected by GuHCl,which suggests that the denaturant does not significantly perturb intrinsicbackbone conformational preferences. A set of3JHNHα values is presented which agreewell with predictions of recently developed models of the random coil. Wehave also measured the chemical shifts of all 20 proteogenic amino acids inthese peptides over a range of GuHCl concentrations. The shifts exhibit alinear dependence on denaturant concentration and we report here correctionfactors for the calculation of ‘random coil’ 1H chemicalshifts at any arbitrary denaturant concentration. Studies of arepresentative subset of peptides indicate that 13C and15N chemical shifts are also perturbed by the denaturant.These results should facilitate the application of chemical shift-basedanalytical techniques to the study of polypeptides in solution with GuHCl.The effects of the denaturant on the quality of NMR spectra and on chemicalshift referencing are also addressed.

Denatured protein Folding Proline isomerization Coupling constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcus, V.L., Vuilleumier, S., Freund, S.M.V., Bycroft, M. and Fersht, A.R. (1995) J. Mol. Biol., 254, 305–321.Google Scholar
  2. Asakura, T., Taoka, K., Demura, M. and Williamson, M.P. (1995) J. Biomol. NMR, 5, 227–236.Google Scholar
  3. Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 63, 207–213.Google Scholar
  4. Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., {vn116}, 8466–8469.Google Scholar
  5. Bruhwiler, D. and Wagner, G. (1986) J. Magn. Reson., 69, 546–551.Google Scholar
  6. Bundi, A., Grathwohl, C., Hochmamn, J., Keller, R.M., Wagner, G. and Wüthrich, K. (1975) J. Magn. Reson., 18, 191–198.Google Scholar
  7. Bundi, A. and Wüthrich, K. (1979) Biopolymers, 18, 285–297.Google Scholar
  8. Dobson, C.M. (1992) Curr. Opin. Struct. Biol., 2, 6–12.Google Scholar
  9. Englander, S.W., Sosnick, T.R., Englander, J.J. and Mayne, L. (1996) Curr. Opin. Struct. Biol., 6, 18–23.Google Scholar
  10. Fiebig, K.M., Schwalbe, H., Buck, M., Smith, L.J. and Dobson, C.M. (1996) J. Chem. Phys., 100, 2661–2666.Google Scholar
  11. Hoeltzli, S.D. and Frieden, C. (1995) Proc. Natl. Acad. Sci. USA, 92, 9318–9322.Google Scholar
  12. Jiménez, M.A., Nieto, J.L., Rico, M., Santoro, J., Herranz, J. and Bermejo, F.J. (1986) J. Mol. Struct., 143, 435–438.Google Scholar
  13. Jiménez, M.A., Blanco, F.J., Rico, M., Herranz, J., Santoro, J. and Nieto, J.L. (1992) Eur. J. Biochem., 207, 39–49.Google Scholar
  14. Kay, L.E. and Bax, A. (1990) J. Magn. Reson., 86, 110–126.Google Scholar
  15. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  16. Kay, M.S. and Baldwin, R.L. (1996) Nat. Struct. Biol., 3, 439–445.Google Scholar
  17. Keim, P., Vigna, R.A., Marshall, R.C. and Gurd, F.R.N. (1973) J. Biol. Chem., 248, 6104–6113.Google Scholar
  18. Keim, P., Vigna, R.A., Morrow, A.M., Marshall, R.C. and Gurd, F.R.N. (1974) J. Biol. Chem., 249, 4149–4156.Google Scholar
  19. Kiefhaber, T., Labhardt, A.M. and Baldwin, R.L. (1995) Nature, 375, 513–515.Google Scholar
  20. Kotik, M., Radford, S.E. and Dobson, C.M. (1995) Biochemistry, 34, 1714–1724.Google Scholar
  21. Lu, H., Ph.D. Thesis, University of Oxford, Oxford, U.K., 1997.Google Scholar
  22. Masson, A. and Wüthrich, K. (1973) FEBS Lett., 31, 114–118.Google Scholar
  23. Merutka, G., Dyson, H.J. and Wright, P.E. (1995) J. Biomol. NMR, {vn5}, 14–24.Google Scholar
  24. Nozaki, Y. (1972) Methods Enzymol., 26, 43–51.Google Scholar
  25. Oldfield, E. (1995) J. Biomol. NMR, 5, 217–225.Google Scholar
  26. Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215–230.Google Scholar
  27. Pace, C.N. (1986) Methods Enzymol., 131, 267–280.Google Scholar
  28. Pastore, A. and Saudek, V. (1990) J. Magn. Reson., 90, 165–176.Google Scholar
  29. Plaxco, K.W. and Dobson, C.M. (1996) Curr. Opin. Struct. Biol., 6, 630–636.Google Scholar
  30. Pople, J.A. (1957a) Proc. R. Soc., 239A, 541–549.Google Scholar
  31. Pople, J.A. (1957b) Proc. R. Soc., 239A, 550–556.Google Scholar
  32. Pople, J.A., Schneider, W.G. and Bernstein, H.J. (1959) High-resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, NY, U.S.A., pp. 400–421.Google Scholar
  33. Ptitsyn, O.B. (1995) Curr. Opin. Struct. Biol., 5, 74–78.Google Scholar
  34. Rance, M., Sørensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., {vn117}, 479–485.Google Scholar
  35. Redfield, C., Smith, R.A.G. and Dobson, C.M. (1994) Nat. Struct. Biol., 1, 23–29.Google Scholar
  36. Reily, M.D., Thanabal, V. and Omecinsky, D.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.Google Scholar
  37. Richarz, R. and Wüthrich, K. (1978) Biopolymers, 17, 2133–2141.Google Scholar
  38. Rizo, J., Blanco, F.J., Kobe, B., Bruch, M.D. and Gierash, L.M. (1993) Biochemistry, 32, 4881–4894.Google Scholar
  39. Schulman, B.A., Redfield, C., Peng, Z.Y., Dobson, C.M. and Kim, P.S. (1995) J. Mol. Biol., 253, 651–657.Google Scholar
  40. Serrano, L. (1995) J. Mol. Biol., 254, 322–333.Google Scholar
  41. Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson., {vn64}, 547–552.Google Scholar
  42. Shin, H.-C., Merutka, G., Waltho, J.P., Wright, P.E. and Dyson, H.J. (1993) Biochemistry, 32, 6348–6355.Google Scholar
  43. Shortle, D. (1993) Curr. Opin. Struct. Biol., 3, 66–74.Google Scholar
  44. Shortle, D.R. (1996) Curr. Opin. Struct. Biol., 6, 24–30.Google Scholar
  45. Smith, L.J., Sutcliffe, M.J., Redfield, C. and Dobson, C.M. (1991) Biochemistry, 30, 986–996.Google Scholar
  46. Smith, L.J., Bolin, K.A., Schwalbe, H., MacArthur, M.W., Thornton, J.M. and Dobson, C.M. (1996) J. Mol. Biol., 225, 494–506.Google Scholar
  47. Tanford, C. (1968) Adv. Protein Chem., 23, 121–282.Google Scholar
  48. Thanabal, V., Omecinsky, D.O., Reily, M.D. and Cody, W.L. (1994) J. Biomol. NMR, 4, 47–59.Google Scholar
  49. Wang, Y. and Shortle, D. (1995) Biochemistry, 34, 15895–15905.Google Scholar
  50. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991a) FEBS Lett., {vn193}, 72–80.Google Scholar
  51. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991b) J. Mol. Biol., {vn222}, 311–333.Google Scholar
  52. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1992) Biochemistry, {vn311}, 1647–1651.Google Scholar
  53. Wishart, D.S. and Sykes, B.D. (1994a) J. Biomol. NMR, 4, 171–180.Google Scholar
  54. Wishart, D.S. and Sykes, B.D. (1994b) Methods Enzymol., 239, 363–392.Google Scholar
  55. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67–81.Google Scholar
  56. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135–140.Google Scholar
  57. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A., pp. 15–17.Google Scholar
  58. Wüthrich, K. (1994) Curr. Opin. Struct. Biol., 4, 93–99.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Kevin W. Plaxco
    • 1
  • Craig J. Morton
    • 1
  • Shaun B. Grimshaw
    • 1
  • Jonathan A. Jones
    • 1
  • Maureen Pitkeathly
    • 1
  • Iain D. Campbell
    • 1
  • Christopher M. Dobson
    • 1
  1. 1.Oxford Centre for Molecular SciencesUniversity of Oxford, New Chemistry LaboratoryU.K

Personalised recommendations