Advertisement

Biotechnology Letters

, Volume 19, Issue 8, pp 759–762 | Cite as

H and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria

  • Massimo Vincenzini
  • Antonio Marchini
  • Alba Ena
  • Roberto De Philippis
Article

Abstract

The feasibility of a process for the photoproduction of both H 2 and poly-b-hydroxybutyrate (PHB)-containing biomass has been tested utilizing semi-continuous cultures of Rhodopseudomonas palustris growing in a tubular system with limiting amounts of fixed nitrogen. A two-stage batch process, consisting in a first period of nitrogen-limited cell growth followed by a second period of cell cultivation under conditions of phosphorus shortage, showed the possibility to separate the H production phase from the PHB accumulation phase, making possible to carry out processes that otherwise would be in competition.

Keywords

Nitrogen Sulfur Biomass Cell Cultivation Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chakrabarti, S. and Smith, G.D. (1981). Biochem. Int. 2, 59–69.Google Scholar
  2. De Philippis, R., Sili, C. and Vincenzini, M. (1992a). J. Gen. Microbiol. 138, 1623–1628.Google Scholar
  3. De Philippis, R., Ena, A., Guastini, M., Sili, C. and Vincenzini, M. (1992b). FEMS Microbiol. Rev. 103, 187–194.Google Scholar
  4. De Philippis, R., Margheri, M.C. and Vincenzini, M. (1996). Algological Studies 83, 459–468.Google Scholar
  5. Gest, H., Ormerod, J.G. and Ormerod, K.S. (1962). Arch. Biochem. Biophys. 97, 21–33.Google Scholar
  6. Herbert, D., Phipps, R.E. and Strange, R.E. (1971). In: Methods in Microbiology, J.R. Norris and D.W. Ribbons, eds. vol. 5B. pp. 209–344, London: Academic Press.Google Scholar
  7. Hustede, E., Steinbüchel, A. and Schlegel, H.G. (1993). Appl. Microbiol. Biotechnol. 39, 87–93.Google Scholar
  8. Klein, G., Klipp, W., Jahn, A., Steinborn, B. and Oelze, J. (1991). Arch. Microbiol. 155, 477–482.Google Scholar
  9. Sasikala, C., Ramana, C.V., Raghuveer Rao, P. and Kovacs, K.L. (1993). Adv. Appl. Microbiol. 38, 211–295.Google Scholar
  10. Sasikala, C. and Ramana, C.V. (1995a). Adv. Appl. Microbiol. 41, 173–226.Google Scholar
  11. Sasikala, C. and Ramana, C.V. (1995b). Adv. Appl. Microbiol. 41, 227–278.Google Scholar
  12. Solorzano, L. (1969). Limnol. Oceanogr. 14, 799–801.Google Scholar
  13. Thepenier, C., Chaumont, D. and Gudin, C. (1988). Mass culture of Porphyridium cruentum: a multiproduct strategy for the biomass valorization: In: Algal Biotechnology, T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan and D. Christiaen, eds. pp. 413–420, London: Elsevier Applied Science.Google Scholar
  14. Vignais, P.M., Colbeau, A., Willison, J.C. and Jouanneau, Y. (1985). Adv. Microb. Physiol. 26, 155–234.Google Scholar
  15. Vincenzini, M., Materassi, R., Sili, C. and Balloni, W. (1985). Ann. Microbiol. 35, 155–164.Google Scholar
  16. Vincenzini, M., Materassi, R., Tredici, M.R. and Florenzano, G. (1982). Int. J. Hydrogen Energy 7, 725–728.Google Scholar
  17. Willison, J.C. (1993). FEMS Microbiol. Rev. 104, 1–38.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Massimo Vincenzini
    • 1
  • Antonio Marchini
    • 1
  • Alba Ena
    • 1
  • Roberto De Philippis
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversita' degli Studi, and Centro di Studio dei Microrganismi Autotrofi, CNRFirenzeItaly

Personalised recommendations