, Volume 103, Issue 3, pp 287–292 | Cite as

Identification of genomic regions for rust resistance in sorghum

  • Y.Z. Tao
  • D.R. Jordan
  • R.G. Henzell
  • C.L. McIntyre


The location and effects of genomic regions for rust resistance in sorghum were determined. One hundred and sixty recombinant inbreds, which derived from a cross between QL39 and QL41, were used as a segregating population for genome mapping and rust resistance evaluation. Phenotypic data were collected in replicated field trials in two years. Interval mapping and non-parametric mapping identified four regions, each in a separate linkage group, associated with rust resistance. The region with the largest effect on rust resistance is on linkage group 10; it accounted for 40% of the total phenotypic variation.

Sorghum genome mapping rust RFLP QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chittenden, L.M., K.F. Schertz, Y.R. Lin, R.A. Wing & A.H. Paterson, 1994. A detailed RFLP map of Sorghum bicolor× S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghumchromosomes or chromosomal segments. Theor Appl Genet 87: 925-933.Google Scholar
  2. Coleman, O.H. & J.L. Dean, 1961. The inheritance of resistance to rust in sorghum. Crop Science 1, 152-154.CrossRefGoogle Scholar
  3. Dufour, P., Deu, M., L. Grivet, A. Dhont, F. Paulet, A. Bouet, C. Lanaud, J.C. Glaszmann & P. Hamon, 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94: 409-418.CrossRefGoogle Scholar
  4. Frederiksen, R.A., 1986. Compendium of sorghum disease. St. Paul MN. USA. American Phytopathological Society. pp 23.Google Scholar
  5. Henzell, R.G., 1992. Grain sorghum breeding in Australia: current status and future prospects. In: M.A. Foale, R.G. Henzell & P.N. Vance (Eds) Proc 2nd Australian Sorghum Conf, Gatton, 4-6 February, 1992. pp. 70-82. Australian Institute of Agricultural Science, Melbourne, Occasional Publication No 68.Google Scholar
  6. Henzell, R.G., B.A. Franzmann & R.L. Brengman, 1994. Sorghum midge resistance research in Australia. Internatl Sorghum Millets Newslett 35: 41-47.Google Scholar
  7. Hooker, A.L., 1985. Corn and sorghum rust. In: A.P. Roelfs & W.R. Bushnell, (Eds), The cereals rusts. Vol. 2. Disease distribution, epidemiology and control. pp. 207-236. Academic Press, New York.Google Scholar
  8. Hu, G.S. & S. Hulbert, 1996. Construction of 'compound' rust resistance gene in maize. Euphitica 87: 45-51.CrossRefGoogle Scholar
  9. Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.PubMedGoogle Scholar
  10. Lin, Y.R., K.F. Schertz & A.H. Paterson, 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poacea, in reference to an interspecific sorghum population. Genetics 141: 391-411.PubMedGoogle Scholar
  11. Miller, F.R. & H.J. Cruzado, 1969. Allelic interactions at the Pu locus in Sorghum bicolor (L.) Moench. Crop Science 9, 336- 338.CrossRefGoogle Scholar
  12. Paterson, A.H., 1994. Status of genome mapping in sorghum, and prospects for marker-assisted selection in sorghum improvement. Internatl Sorghum Millets Newslet 35: 89-91.Google Scholar
  13. Patil-Kulkarni, B.G., A. Puttarudrappa, N.B. Kajjari & J.V. Goud, 1972. Breeding for rust resistance in sorghum. Indian Phytopathol 25: 166-168.Google Scholar
  14. Pereira, M.G., M. Lee, P. Bramel-Cox, W. Woodman, J. Doebley & R. Whitkus, 1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236-243.PubMedGoogle Scholar
  15. Pereria, M.G., & M. Lee, 1995. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90: 380-388.Google Scholar
  16. Rana, B.S., D.P. Tripathi & N.G. Rao, 1976. Genetic analysis of some exotic x Indian crosses in sorghum. XV. Inheritance of resistance to sorghum rust. Indian J Genet Plant Breed. 36: 244-249.Google Scholar
  17. Tao, Y.Z., D.R. Jordan, R.G. Henzell & C.L. McIntyre, 1997. Application of genome mapping in Australian sorghum breeding. In: Dajue Li (Ed) Proc 1st interntl sweet sorghum conf, Beijing, 14-19 Sep. pp 563-572.Google Scholar
  18. Tao, Y.Z., D.R. Jordan, R.G. Henzell & C.L. McIntyre, 1998. Construction of an integrated sorghum genetic map in a sorghum RIL population by using probes from different sources and its alignment with other sorghum maps. Australian Journal of Agricultural Research 49: 729-736.CrossRefGoogle Scholar
  19. Tuinstra, M.R., E.M. Grote, P.B. Goldsbrough & G. Ejeta, 1996. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Science 36: 1337-1344.CrossRefGoogle Scholar
  20. Van Ooijen, J.M. & C. Maliepaard, 1996. MapQTL (tm) version 3.0 softwear for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen.Google Scholar
  21. Van Ooijen, J.W., 1992. Accuracy of mapping quantitative trait loci in autogramous species. Theor. Appl. Genet. 84: 803-811.Google Scholar
  22. Xu, G.W., C.W. Magill, K.F. Schertz & G.E. Hart, 1994. A RFLP linkage map of S orghum bicolor(L.) Moench. Theor Appl Genet 89: 139-145.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Y.Z. Tao
    • 1
  • D.R. Jordan
    • 1
  • R.G. Henzell
    • 2
  • C.L. McIntyre
    • 1
  1. 1.Tropical AgricultureCSIROLuciaAustralia
  2. 2.Queensland Department of Primary IndustriesHermitage Research StationWarwickAustralia

Personalised recommendations