Advertisement

Genetica

, Volume 100, Issue 1–3, pp 15–28 | Cite as

What makes Grande1 retrotransposon different?

  • José A. Martínez-Izquierdo
  • José García-Martínez
  • Carlos M. Vicient
Article

Abstract

Grande1 elements constitute a family of Ty3 retrotransposons present in the Zea genus in more than 1000 copies in Zea diploperennis and maize. The sequences of three Grande1 flanking regions, two from Z. diploperennis and one from maize, reveal transposable elements as insertion targets, suggesting a preferential integration of Grande1 elements into other transposable elements. These retrotransposons are remarkable for their large size of around 14 kb, which is a consequence of a very large 3′ region of more than 7 kb. Atypical entities within this region are two arrays of unrelated tandem repeats with potential stable stem-loop structures. A large portion of the same region is occupied by ORFs, although only ORF23, whose function is unknown, is presumably transcribed in antisense orientation to the reverse transcriptase ORF. Only ORF23 has a codon usage similar to the one tabulated for highly-expressed maize genes. Correspondingly, the transcript of 900 b that hybridizes with ORF23 probes is found in all the maize tissues explored. This is despite the high level of methylation in the DNA of Grande1. Genomic RNA has not been detected in any tissue or situation studied, probably reflecting a non-functional retrotransposon. The origin of ORF23 and the remainder 3′ region might be due to a transduction event.

antisense RNA methylation ORF codon usage tandem Zea genus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksoy, S., S. Williams, S. Chang & F.F. Richards, 1990. SLACS retrotransposon from Tripanosoma brucei gambiense is similar to mammalian LINEs. Nucleic Acids Res. 18: 785–792.PubMedGoogle Scholar
  2. Aledo, R., R. Raz, A. Monfort, C.M. Vicient, P. Puigdomenech & J. A. Martinez-Izquierdo, 1995. Chromosome Localization and characterization of a family of long interspersed repetitive DNA elements from the genus Zea. Theor. Appl. Genet. 90: 1094–1100.CrossRefGoogle Scholar
  3. Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.Google Scholar
  4. Bennetzen, J.L., 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.PubMedCrossRefGoogle Scholar
  5. Boeke, J.D. & V.G. Corces, 1989. Transcription and reverse tran-scription of retrotransposons. Annu. Rev. Microbiol. 42: 403–434.CrossRefGoogle Scholar
  6. Bureau, T.E. & S.R. Wessler, 1992. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294.PubMedCrossRefGoogle Scholar
  7. Bureau, T.E. & S.R. Wessler, 1994. Mobile inverted-repeat elements of the tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 1411–1415.PubMedCrossRefGoogle Scholar
  8. Bureau, T.E., S.E. White & S.R. Wessler, 1994. Transduction of a cellular gene by plant retroelement. Cell 77: 479–480.PubMedCrossRefGoogle Scholar
  9. Chavanne, F., D.X. Zhang, M.F. Liaud & R. Cerff, 1994. Structure and evolution of a new gypsy-like retrotransposon in pea (Tps1). Abstract 203. 4th International Congress of Plant Molecular Biol-ogy. Amsterdam.Google Scholar
  10. Day, A. & J.D. Rochaix, 1991. Structure and Inheritance of sense and anti-sense transcripts from a transposon in the green alga Chlamydomonas reinhardtii. J. Mol. Biol. 218: 273–291.PubMedCrossRefGoogle Scholar
  11. Day, A., M. Schirmer-Rahire, M.R. Kuchka, S.P. Mayfield & J-D. Rochaix, 1988. Atransposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. EMBO J. 7: 1917–1927.PubMedGoogle Scholar
  12. Dellaporta, S.L., J. Wood & J.B. Hicks, 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.Google Scholar
  13. Devereux, J., P. Haeberli & O. Smithies, 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.PubMedGoogle Scholar
  14. Fedoroff, N.V., 1989. About maize transposable elements and devel-opment. Cell 56: 181–191.PubMedCrossRefGoogle Scholar
  15. Fickett, J.W., 1982. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 10: 5303–5318.PubMedGoogle Scholar
  16. Finnegan, E.J., R.I.S. Brettell & E.S. Dennis, 1993. The role of DNA methylation in the regulation of plant gene expression, pp. 218–261 in DNA Methylation: Molecular Biology and Biological Significance, edited by J.P. Jost and H.P. Saluz. Birkhauser Verlag, Basle, Switzerland.Google Scholar
  17. Flavell, A.J., 1992. Ty1-copia group retrotransposons and the evolu-tion of retroelements in the eukaryotes. Genetica 86: 203–214.PubMedCrossRefGoogle Scholar
  18. Flavell, R.B., M. O'Dell & W.F. Thompson, 1988. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204: 523–534.PubMedCrossRefGoogle Scholar
  19. Grasser, K.D., 1995. Plant chromosomal high mobility group (HMG) proteins. Plant J. 7: 185–192.PubMedCrossRefGoogle Scholar
  20. Gruenbaum, Y., T. Naveh-Many, H. Cedar & A. Razin, 1981. Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862.PubMedCrossRefGoogle Scholar
  21. Hershberger, R.J., M.I. Benito, K.J. Hardeman, C. Warren, V.L. Chandler & V. Walbot, 1995. Characterization of the major tran-.27 scripts encoded by the regulatory MuDR transposable element in maize. Genetics 140: 1087–1098.PubMedGoogle Scholar
  22. Higgins, D.G., A.J. Bleasby & R. Fuchs, 1992. CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8: 189–191.PubMedGoogle Scholar
  23. Hu, W., O.P. Das & J. Messing, 1995. Zeon-1, a member of a new maize retrotransposon family. Mol. Gen. Genet. 248: 471–480.PubMedCrossRefGoogle Scholar
  24. Huijser, P., C. Kirchhoff, D.H. Lankenau & W. Hennig, 1988. Retrotransposon-like sequences are expressed in Y chromoso-mal lampbrush loops of Drosophila hydei. J. Mol. Biol. 203: 689–697.PubMedCrossRefGoogle Scholar
  25. Ilyin, Y.V., N.V. Lyubomirskaya & A.I. Kim, 1991. Retrotransposon gypsy and genetic instability in Drosophila. Genetica 85: 13–22.PubMedCrossRefGoogle Scholar
  26. James, M.G., M.J. Scanlon, M. Qin, D.S. Robertson & A.M. Myers, 1993. DNAsequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol. Biol. 21: 1181–1185.PubMedCrossRefGoogle Scholar
  27. Jin, Y.K. & J.L. Bennetzen, 1994. Integration and nonrandom muta-tion of a plasma membrane proton ATPase gene fragment within Bs1 retroelement of maize. Plant Cell 6: 1177–1186.PubMedCrossRefGoogle Scholar
  28. Kim, A., C. Terzian, P. Santamar´ýa, A. Pelisson, N. Prud'Homme & A. Bucheton, 1994. Retroviruses in invertebrates: the gypsy retro-transposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91: 1285–1289.PubMedCrossRefGoogle Scholar
  29. Kleckner, N., 1989. Transposon Tn10, pp. 227–268 in Mobile DNA, edited by D. E. Berg and M.M. Howe. Am. Soc. Microbiol. Washington, DC.Google Scholar
  30. Kozak, M., 1984. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 12: 857–872.PubMedGoogle Scholar
  31. Labrador, M. & A. Fontdevila, 1994. High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. Mol. Gen. Genet. 245: 661–674.PubMedCrossRefGoogle Scholar
  32. Lankenau, D.H., 1993. The retrotransposon family micropia in Drosophila species, pp. 232–241 in Transposable Elements and Evolution, edited by J.F. McDonald. Kluwer Academic Publish-ers, Netherlands.Google Scholar
  33. Lankenau, S., V.G. Corces & D.H. Lankenau, 1994. The Drosophila micropia retrotransposon encodes a testis specific antisense RNA complementary to reverse transcriptase. Mol. Cell. Biol. 14: 1764–1775.PubMedGoogle Scholar
  34. Lloyd, J.A. & S.S. Potter, 1988. Distinct subfamilies of primate LiGg retroposons, with some elements carrying tandem repeats in the 50 region. Nucleic Acids Res. 16: 6147–6156.PubMedGoogle Scholar
  35. Loeb, D.D., R.W. Padgett, S.C. Hardies, W.R. Shehee, M.B. Comer, M.H. Edgell & C.A. Hutchison, III, 1986. The sequence of a large L1Md element reveals a tandemly repeated 50 end and several features found in retrotransposons. Mol. Cell. Biol. 6: 168–182.PubMedGoogle Scholar
  36. Logemann, J., J. Schell & L. Willmitzer, 1987. Improved method for the isolation of RNA from plat tissues. Ann. Biochem. 163: 16–20.CrossRefGoogle Scholar
  37. Lucas, H., G. Moore, G. Murphy & R.B. Flavell, 1992. Inverted repeats in the long-terminal repeats of the wheat retrotransposon Wis 2–1 A. Mol. Biol. Evol. 9: 716–728.PubMedGoogle Scholar
  38. Manninen, I. & A.H. Schulman, 1993. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol. Biol. 22: 829–846.PubMedCrossRefGoogle Scholar
  39. McMullen, M.D., B. Hunter, R.L. Phillips & I. Rubenstein, 1986. The structure of the maize ribosomal DNA spacer region. NucleicAcid Res. 14: 4953–4969.CrossRefGoogle Scholar
  40. Monfort, A., C.M. Vicient, R. Raz, P. Puigdomenech & J.A. Martínez-Izquierdo, 1995. Molecular analysis of a putative trans-posable retroelement from the Zea genus with internal clusters of tandem repeats. DNA Res. 2: 255–261.PubMedCrossRefGoogle Scholar
  41. Moore, G., H. Lucas, N. Batty & R.A. Flavell, 1991. A family of retrotransposons and associated genomic variation in wheat. Genomics 10: 461–468.PubMedCrossRefGoogle Scholar
  42. Ohtsubo, H. & E. Ohtsubo, 1994. Involvement of transposition in dispersion of tandem repeat sequences (TrsA) in rice genomes. Mol. Gen. Genet. 245: 449–455.PubMedCrossRefGoogle Scholar
  43. Pelissier, T., S. Tutois, J.M. Deragon, S. Tourmente, S. Genestier & G. Picard, 1995. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol. 29: 441–452.PubMedCrossRefGoogle Scholar
  44. Prat, S., J. Cortadas, P. Puigdomènech & J. Palau, 1985. Nucleic acid (cDNA) and amino acid sequences of the endosperm protein glutelin-2. Nucleic Acids Res. 13: 1493–1504.PubMedGoogle Scholar
  45. Proudfoot, N.J., 1989. HowRNApolymerase II terminates transcrip-tion in higher eukaryotes. Trends Biochem. Sci. 14: 105–110.PubMedCrossRefGoogle Scholar
  46. Raz, R., P. Puigdomenech & J.A. Mart´ýnez-Izquierdo, 1991. A new family of repetitive nucleotide sequences is restricted to the genus Zea. Gene 105: 151–158.PubMedCrossRefGoogle Scholar
  47. Rothnie, H.M., K.J. McCurrach, L.A. Glover & N. Hardman, 1990. Retrotransposon-like nature of Tp1 elements: implications for the organization of highly repetitive, hypermethylated DNA in the genome ofPhysarum polycephalum. Nucleic Acids Res. 19: 279–286.Google Scholar
  48. Saitou, N. & N. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  49. Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning:a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  50. Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integra-tion specificity of retrotransposons and retroviruses. Annu. Rev.Genet. 24: 491–518.PubMedCrossRefGoogle Scholar
  51. SanMiguel, P., A. Tikhonov, Y-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotrans-posons in the intergenic regions of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  52. Scheineker, V.S., E.R. Lozovskaya, J.G. Bishop & M.B. Evgen'ev,1990. A long terminal repeat-containing retrotransposon is mobi-lized during hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 87: 9615–9619.CrossRefGoogle Scholar
  53. Schwarz-Sommer, Z. & H. Saedler, 1988. Transposons and retro-transposons in plants: analysis and biological relevance, pp. 343–354 in Transposition, edited by A.J. Kingsman, K.F. Chater and S.M. Kingsman. The Society for General Microbiology, Sympo-sium 43. Cambridge University Press, UK.Google Scholar
  54. Selker, E.U., 1990. DNA methylation and chromatin structure: a view from below. Trends Biochem. Sci. 15: 103–107.PubMedCrossRefGoogle Scholar
  55. Sentry, J.W. & D.R. Smyth, 1989. An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Mol. Gen. Genet. 215: 349–354.PubMedCrossRefGoogle Scholar
  56. Severynse, D.M., C.A. Hutchinson & M.H. Edgell, 1992. Identifi-cation of transcriptional regulatory activity within the 50 A-type monomer sequence of the mouse LINE-1 retroposon. Mamm. Genome 2: 41–50.PubMedCrossRefGoogle Scholar
  57. Shepherd, N.S., Z. Schwarz-Sommer, J. Blumnerg vel Spalve, M. Gupta, U. Wienand & H. Saedler, 1984. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable ele-ments. Nature 307: 185–187.PubMedCrossRefGoogle Scholar
  58. Smyth, D.R., P. Kalitsis, J.L. Jospeh & J.W. Sentry, 1989. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc. Natl. Acad. Sci. USA 86: 5015–5019PubMedCrossRefGoogle Scholar
  59. Varmus, H. & P. Brown, 1989. Retroviruses, pp. 53–108 in Mobile DNA, edited by D.E. Berg and M.M. Howe. Am. Soc. Microbiol.Washington, DC.Google Scholar
  60. Vicient, C.M. Caracterizaci´ on molecular de Grande1, un nuevo retrotranspos´ on del g´ enero Zea. Ph.D. Thesis, University of Barcelona, Spain, 1995.Google Scholar
  61. Vicient, C.M. & J.A. Mart´ýnez-Izquierdo, 1997. Discovery of a Zdel transposable element in Zea species as a consequence of a retrotransposon insertion. Gene 184: 257–261.PubMedCrossRefGoogle Scholar
  62. Weiner, A.M. & R.A. Denison, 1982. Either gene amplification or gene conversion may maintain the homogeneity of the multigene family encoding human U1 small nuclear RNA. Cold Spring Harbor Symp. Quant. Biol. 47: 1141–1149.Google Scholar
  63. White, S.E., L.F. Habera & S.R. Wessler, 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.PubMedCrossRefGoogle Scholar
  64. Woerner, A.M. & C.J. Marcus-Sekura, 1993. Characterization of a DNA binding domain in the C-terminus of HIV-1 integrase by deletion mutagenesis. Nucleic Acids Res. 21: 3507–3511.PubMedGoogle Scholar
  65. Xiong, S., W.D. Burke & T.H. Eickbush, 1993. Pao, a highly retro-transposable element from Bombyx mori containing long termi-nal repeats with tandem copies of the putative R region. Nucleic Acids Res. 21: 2117–2123.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • José A. Martínez-Izquierdo
    • 1
  • José García-Martínez
    • 1
  • Carlos M. Vicient
    • 1
  1. 1.Departamento de Genética Molecular, CID-CSICBarcelonaSpain

Personalised recommendations