Biodiversity & Conservation

, Volume 6, Issue 3, pp 451–476 | Cite as

Alternative models of vertebrate speciation in Amazonia: an overview

  • Ju¨rgen Haffer


The main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of vertebrate species in Amazonia are based on different (mostly historical) factors, as follows. (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea-level fluctuations (Paleogeography hypothesis). (2) The barrier effect of Amazonian rivers (River hypothesis). (3) A combination of the barrier effect of broad rivers and vegetational changes in Northern and Southern Amazonia (River-refuge hypothesis). (4) The isolation of forest blocks near areas of surface relief in the periphery of Amazonia during dry climatic periods of the Tertiary and Quaternary (Refuge theory). (5) Competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis). (6) Parapatric speciation across steep environmental gradients without separation of the representative populations (Gradient hypothesis). Several of these hypotheses are probably relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The paleogeography hypothesis refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis; Milankovitch cycles leading to global climatic-vegetational changes affected the biomes of the world not only during the Pleistocene but also during the Tertiary and earlier geological periods. New geoscientific evidence for the effect of dry climatic periods in Amazonia supports the predictions of the Refuge theory.

Amazonia speciation forest refugia alternative models. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ab'Saber, A.N. (1982) The paleoclimate and paleoecology of Brazilian Amazonia. In Biological Diversification in the Tropics (G.T. Prance, ed.) pp. 41–9. New York: Columbia University Press.Google Scholar
  2. Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Siffedine, A., Ferreira da Silva, M., Soubies, F., Suguio, K., Turcq, B. and Van der Hammen, T. (1991) Mise en évidence de quatre phases d'ouverture de la foret dense dans le sud-est de l'Amazonie au cours des 60 000 dernières années. Première comparaison avec d'autres régions tropicales. C.R. Acad. Sci. Paris 312, sér. II: 673–8.Google Scholar
  3. Ayres, J.M.C. (1986) Uakaris and Amazonian flooded forest. PhD dissertation, University of Cambridge, Cambridge, England.Google Scholar
  4. Ayres, J.M.C. and Clutton-Brock, T.H. (1992) River boundaries and species range size in Amazonian primates. Am. Naturalist 140, 531–7.Google Scholar
  5. Bartlein, P.J. and Prentice, I.C. (1989) Orbital variations, climate and paleoecology. Trends Ecol. Evol. 4, 195–9.Google Scholar
  6. Bates, H.W. (1863) The Naturalist on the River Amazon. London: Murray.Google Scholar
  7. Bennett, K.D. (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16, 11–21.Google Scholar
  8. Berger, A., Loutre, M.F. and Dehant, V. (1989) Pre-Quaternary Milankovitch frequencies. Nature 342, 133.Google Scholar
  9. Bettencourt, J.S., Muzzolon, R., Payolla, B.L., Dall'Igna, L.G. and Pinho, O.G. de (1988) Depósitos estaníferos secundários de região central de Rondônia in Principais Depósitos Minerais do Brasil, vol. 3, Brasilia.Google Scholar
  10. Bibus, E. (1983) Die klimamorphologische Bedeutung von stone-lines und Decksedimenten in mehrgliedrigen Bodenprofilen Brasiliens. Zeitschr. Geomorph. N.F., Suppl.-Band 48, 79–98.Google Scholar
  11. Brower, A.V.Z. (1996) Parallel race formation and the evolution of mimicry in Heliconius butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221.Google Scholar
  12. Bush, M.B. (1994) Amazonian speciation: a necessarily complex model. J. Biogeogr. 21, 5–17.Google Scholar
  13. Capparella, A. (1988) Genetic variation in Neotropical birds: implication for the speciation process. Acta XIX Congr. Intern. Ornith. (Ottawa 1986), vol. 2, 1658–64.Google Scholar
  14. Capparella, A. (1991) Neotropical avian diversity and riverine barriers. Acta XX Congr. Intern. Ornith. (Aukland 1990), vol. 1, 307–16.Google Scholar
  15. Cerqueira, R. (1982) South American landscapes and their mammals. In Mammalian Biology in South America (M.A. Mares and H.H. Genoways, eds) pp. 53–75. Spec. Publ. 6, Pymatuning Laboratory of Ecology, University of Pittsburgh.Google Scholar
  16. Chapman, F.M. (1917) The distribution of bird-life in Colombia; a contribution to a biological survey of South America. Bull. Am. Mus. Nat. Hist. 36, 729 pp.Google Scholar
  17. Colinvaux, P. (1993) Pleistocene biogeography and diversity in tropical forests of South America. In Biological Relationships between Africa and South America (P. Goldblatt, ed.) pp. 473–99. New Haven: Yale University Press.Google Scholar
  18. Cracraft, J. and Prum, R.O. (1988) Patterns and processes of diversification: speciation and historical congruence in some Neotropical birds. Evolution 42, 603–20.Google Scholar
  19. Croizat, L. (1976) Biogeografía analítica y sintética (‘Panbiogeografía’) de las Américas; tomo 1–2. Biblioteca de la Academia de Ciencias Físicas, Matemáticas y Naturales, vol. 15. Caracas.Google Scholar
  20. Di Castri and Hadley, M. (1988) Enhancing the credibility of ecology: interacting along and across hierarchical scales. GeoJournal 17, 5–35Google Scholar
  21. Eden, M.J., McGregor, D.F.M. and Morelo, J.A. (1982) Geomorphology of the middle Caquetá basin of eastern Colombia. Zeitschr. Geomorph. N.F. 26, 343–64.Google Scholar
  22. Emmerich, K.H. (1988) Relief, Böden und Vegetation in Zentral-und Nordwest-Brasilien unter besonderer Berücksichtigung der Känozoischen Landschaftsentwicklung. Frankfurter Geowiss. Arbeiten, Serie D (Phys. Geogr.) 8, 218 pp.Google Scholar
  23. Emsley, M.G. (1965) Speciation in Heliconius (Lep., Nymphalidae): Morphology and geographic distribution. Zoologica (N.Y.) 50, 191–254.Google Scholar
  24. Endler, J. (1982) Pleistocene forest refuges: fact or fancy? In Biological Diversification in the Tropics (G.T. Prance, ed.) pp. 179–200. New York: Columbia University Press.Google Scholar
  25. Fjeldså, J. (1992) Biogeographic patterns and evolution of the avifauna of relict high-altitude woodlands of the Andes. Steenstrupia 18, 9–62.Google Scholar
  26. Fjeldså, J. (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiv. Conserv. 3, 207–26.Google Scholar
  27. Fjeldså, J. and Lovett, J.C. (1997) geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiv. Conserv. 6, 325–46.Google Scholar
  28. Frailey, C.D., Lavina, E.L., Rancy, A. and Pereira de Souza, J. (1988) A proposed Pleistocene/Holocene lake in the Amazon Basin and its significance to Amazonian geology and biogeography. Acta Amazônica 18, 119–43.Google Scholar
  29. Futuyama, D.J. and Shapiro, L.H. (1995) Hybrid zones. Evolution 49, 222–6.Google Scholar
  30. Haffer, J. (1967) Speciation of Colombian forest birds west of the Andes. Am. Mus. Novitates 2294, 57 pp.Google Scholar
  31. Haffer, J. (1969) Speciation in Amazonian forest birds. Science 165, 131–7.Google Scholar
  32. Haffer, J. (1974) Avian speciation in tropical South America. Publ. Nuttall Ornith. Club 14, 390 pp.Google Scholar
  33. Haffer, J. (1978) Distribution of Amazon forest birds. Bonner zool. Beiträge 29, 38–78.Google Scholar
  34. Haffer, J. (1981) Aspects of Neotropical bird speciation during the Cenozoic. In Vicariance Biogeography (G. Nelson and D.E. Rosen, eds) pp. 371–94. New York: Columbia University Press.Google Scholar
  35. Haffer, J. (1982) General aspects of the refuge theory. In Biological Diversification in the Tropics (G.T. Prance, ed.) pp. 6–24. New York: Columbia University Press.Google Scholar
  36. Haffer, J. (1987) Quaternary history of tropical America. In Biogeography and Quaternary History in Tropical America (T.C. Whitmore and G.T. Prance, eds) pp. 1–18. Oxford: Clarendon and Oxford University Press.Google Scholar
  37. Haffer, J. (1990) Geoscientific aspects of allopatric speciation. In Vertebrates in the Tropics (G. Peters & R. Hutterer, eds) pp. 45–60. Museum A. Koenig, Bonn, Germany.Google Scholar
  38. Haffer, J. (1993a) On the ‘river effect’ in some forest birds of southern Amazonia. Boletim do Museu Paraense E. Goeldi (Brasil), Zoología 8, 217–45 (‘1992’).Google Scholar
  39. Haffer, J. (1993b) Time's cycle and Time's arrow in the history of Amazonia. Biogeographica 69, 15–45 (C.R. de séances de la Societé de Biogéographie, Paris).Google Scholar
  40. Haffer, J. (1997) Contact zones between birds of southern Amazonia. Ornith. Monogr. (in press).Google Scholar
  41. Hellmayr, C.E. (1910) The birds of the Rio Madeira. Novitates Zool. 17, 257–428.Google Scholar
  42. Hellmayr, C.E. (1912) Zoologische Ergebnisse einer Reise in das Mündungsgebiet des Amazonas (L. Müller). II. Vögel. Abhandl. Königl. Bayer. Akad. Wiss., Math.-Phys. Klasse 26, 1–142.Google Scholar
  43. Herbert, T.D. and Fischer, A.G. (1986) Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–43.Google Scholar
  44. Hershkovitz, P. (1977) Living New World Monkeys (Platyrrhini), vol. 1. Chicago: University of Chicago Press.Google Scholar
  45. Hooghiemstra, H., Melica, J.L., Berger, A. and Shacklton, N.J. (1993) Frequency spectra and paleoclimatic variability of the high-resolution 30-1450 ka Funza I pollen record (Eastern Cordillera, Colombia). Quat. Sci. Rev. 12, 141–56.Google Scholar
  46. Hoorn, C. (1994) Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colombia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 1–54.Google Scholar
  47. Hoorn, C., Guerrero, J., Sarmiento, G.A. and Lorente, M.A. (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–40.Google Scholar
  48. Katzer, F. (1903) Grundzüge der Geologie des unteren Amazonasgebietes. Leipzig: M. Weg.Google Scholar
  49. Kronberg, B.I., Benchimol, R.E. and Bird, M.I. (1991) Geochemistry of Acre Subbasin sediments: window on Ice-Age Amazonia. Interciência 16, 138–41.Google Scholar
  50. Mallet, J. (1993) Speciation, raciation, and color pattern evolution in Heliconius butterflies: evidence from hybrid zones. In Hybrid Zones and the Evolutionary Process (R.G. Harrison, ed.) pp. 226–60. Oxford: Oxford University Press.Google Scholar
  51. Mayr, E. (1942) Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York: Columbia University Press.Google Scholar
  52. Mayr, E. (1963) Animal Species and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
  53. Mayr, E and O'Hara, R.J. (1986) The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67.Google Scholar
  54. Meave, J. and Kellman, M. (1994) Maintenance of rainforest diversity in riparian forests of tropical savannas: implications for species conservation during Pleistocene drought. J. Biogeogr. 21, 121–35.Google Scholar
  55. Meave, J., Kellman, M., MacDougall, A. and Rosales, J. (1991) Riparian habitats as tropical forest refugia. Global Ecol. Biogeogr. Lett. 1, 69–76.Google Scholar
  56. Mosmann, R., Falkenhain, F.U.H., Goncales, A. and Nepomuceno, F. F. (1986) Oil and gas potential of the Amazon Paleozoic basins. In Future Petroleum Provinces of the World (M.T. Halbouty, ed.). Amer. Assoc. Petrol. Geol., Memoir 40, 207–41.Google Scholar
  57. Müller, J., Irion, G., Nunes de Mello, J. and Junk, W. (1995) Hydrological changes of the Amazon during the last glacial-interglacial cycle in central Amazonia. Naturwissenschaften 82, 232–5.Google Scholar
  58. Nuttall, C.P. (1990) A review of the Tertiary non-marine molluscan faunas of the Pebasian and other inland basins of north-western South America. Bull. Brit. Mus. Nat. Hist. (Geol.) 45, 165–371.Google Scholar
  59. Olsen, P.E. (1986) A 40-million-year lake record of Early Mesozoic orbital climatic forcing. Science 234, 842–8.Google Scholar
  60. Patton, J.L. and Smith, M.F. (1992) mtDNA phylogeny of Andean mice: a test of diversification across ecological gradients. Evolution 46, 174–83.Google Scholar
  61. Patton, J.L., Silva, M.N. and Malcolm, J.R. (1994) Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: a test of the riverine barrier hypothesis. Evolution 48, 1314–23.Google Scholar
  62. Petri, S. and Fúlfaro, V.J. (1983) Geología do Brasil. São Paulo: Universidade de São Paulo.Google Scholar
  63. Prance, G.T. (ed.) (1982) Biological Diversification in the Tropics. New York: Columbia University Press.Google Scholar
  64. Prance, G.T. and Lovejoy, T.E. (eds) (1985) Amazonia. Key Environments. Oxford: Pergamon Press.Google Scholar
  65. Prum, R.O. (1988) Historical relationships among avian forest areas of endemism in the Neotropics. Acta XIX Congr. Intern. Ornith. 2, 2562–72.Google Scholar
  66. Rancy, A. (1991) Pleistocene mammals and paleoecology of the western Amazon. PhD dissertation, University of Florida; Ann Arbor; University Microfilm International.Google Scholar
  67. Rancy, A. (1993) A paleofauna da Amazonia indica áreas de pastagem com pouca cobertura vegetal. Ciência Hôje (São Paulo) 16,no. 93, 48–51.Google Scholar
  68. Räsänen, M.E., Salo, J.S., Jungnert, H. and Pittman, L.R. (1990) Evolution of the western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2, 320–32.Google Scholar
  69. Räsänen, M., Neller, R., Salo, J. and Jungner, H. (1992) Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru. Geol. Mag. 129, 293–306.Google Scholar
  70. Räsänen, M.E., Linna, A.M., Santos, J.C.R. and Negri, F.R. (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269, 386–90.Google Scholar
  71. Salo, J., Kalliola, R., Hakkinen, I., Makinen, Y., Niemela, P., Puhakka, M. and Coley, P.D. (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322, 254–58.Google Scholar
  72. Santos, J.O.S., Nelson, B.W. and Giovannini, C.A. (1993) Corpos de areia sob leitos abandonados de grandes rios. Ciência Hôje (São Paulo) 16,no. 93, 22–5.Google Scholar
  73. Shacklton, N.J., Berger, A. and Peltier, W.R. (1990) An alternative astronomical calibration of the lower Pleistocene time scale based on EDP Site 677. Trans. Roy. Soc. Edin. Earth Sci. 81, 251–61.Google Scholar
  74. Sick, H. (1967) Rios e enchentes na Amazônia como obstáculo para a avifauna. Atas Simp. Sôbre a Biota Amazônica, vol. 5 (Zoologia), 495–520.Google Scholar
  75. Silva, J.M.C. de, Novaes, F.C. and Oren, D.C. (1995) A new species of the genus Hylexetastes (Dendrocolaptidae) from eastern Amazonia. Bull. Brit. Ornith. Club 115, 200–6.Google Scholar
  76. Simpson, B.B. and Haffer, J. (1978) Speciation patterns in the Amazonian forest biota. Ann Rev. Ecol. Syst. 9, 497–518.Google Scholar
  77. Snethlage, E. (1913) Über die Verbreitung der Vogelarten in Unteramazonien. J. Ornith. 61, 469–539.Google Scholar
  78. Terborgh, J. (1992) Diversity and the Tropical Rain Forest. New York: Freeman.Google Scholar
  79. Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F. and Liu, K.-b. (1995) Late Glacial Stage and Holocene tropical ice core records from Huascarán. Peru, Science 269, 46–50.Google Scholar
  80. Tuomisto, H., Ruokolainen, K. and Salo, J. (1992) Lago Amazonas: Fact or fancy? Acta Amazônica 33, 353–61.Google Scholar
  81. Van der Hammen, T. and Absy, M.L. (1994) Amazonia during the last glacial. Palaeogeog. Paleoclimatol. Palaeoecol. 109, 247–61.Google Scholar
  82. Vanzolini, P.E. (1973) Paleoclimates, relief, and species multiplication in equatorial forests. In Tropical Forest Ecosystems in Africa and South America: a Comparative Review (B.J. Meggers, E.S. Ayensu and W.D. Duckworth, eds) pp. 255–8. Washington: Smithsonian Press.Google Scholar
  83. Vanzolini, P.E. (1992) Paleoclimas e especiação em animais da América do Sul tropical. Estudos Avançados (São Paulo) 6,no. 15, 41–65.Google Scholar
  84. Vanzolini, P.E. and Williams, E.E. (1970) South American anoles: geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arquivos de Zoología (São Paulo) 19, 1–298.Google Scholar
  85. Veiga, A.T.C., Dardenne, M.A. and Salomao, E.P. (1988) Geologia dos aluvioes auríferos e estaníferos da Amazônia. Anais XXXV Congr. Brasil. Geol. (Belém, Pará) 1, 164–77.Google Scholar
  86. Vrba, E.S. (1992) Mammals as a key to evolutionary theory. J. Mammal. 73, 1–28.Google Scholar
  87. Vrba, E.S. (1993) Mammal evolution in the African Neogene and a new look at the Great American interchange. In Biological Relationships between Africa and South America (P. Goldblatt, ed.) pp. 393–432. New Haven: Yale University Press.Google Scholar
  88. Wallace, A.R. (1853) A Narrative of Travels on the Amazon and Rio Negro. London: Reeve.Google Scholar
  89. Whitmore, R.T. and Prance, G.T. (eds) (1987) Biogeography and Quaternary History in Tropical America. Oxford Monogr. on Biogeogr. 3. Oxford: Clarendon Press.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Ju¨rgen Haffer
    • 1
  1. 1.EssenGermany

Personalised recommendations