Advertisement

Euphytica

, Volume 102, Issue 1, pp 1–7 | Cite as

Loss of genetic diversity associated with selection for resistance to sorghum midge in Australian sorghum

  • D.R. Jordan
  • Y.Z. Tao
  • I.D. Godwin
  • R.G. Henzell
  • M. Cooper
  • C.L. McIntyre
Article

Abstract

In recent years, hybrids with levels of resistance to sorghum midge (Stenodiplosis sorghicola Coquillett) have become available to Australian sorghum producers. These hybrids have been readily accepted to the extent that more than 80% of the sorghum growing area was planted to hybrids with some level of midge resistance by 1995. Since selection for resistance to sorghum midge is one of the primary objectives of Australian sorghum breeding programs, the relationship between resistance and genetic diversity was investigated.

Genetic diversity and heterozygosity were assessed using restriction fragment length polymorphism analysis among 26 grain sorghum hybrids grown commercially in Australia.

The genetic distances between each sorghum hybrid and a standard highly resistant hybrid were found to be strongly negatively correlated to hybrid midge resistance ratings (r = - 0.77, p < 0.001). In addition, the average heterozygosity of each hybrid was correlated with their midge resistance ratings (r = - 0.54, p < 0.01).

The results indicate that the move to midge resistant hybrids has been associated with a narrowing of the genetic diversity and average heterozygosity of commercial sorghum hybrids. Repeated use of particular elite parent lines, linkage drag and genetic drift are likely to have contributed to this decline. This reduction in genetic diversity may have implications for the genetic vulnerability of sorghum in Australia and the rate of progress in breeding for yield.

genetic diversity linkage drag RFLP Stenodiplosis sorghicola sorghum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, B.L., H.C. Sharma, C.V. Abraham & P. Vidyasagar, 1986. Screening sorghum for midge resistance. In: Proceedings of the First Australian Sorghum Conference, pp. 7.1-7.9. Gatton, QLD.Google Scholar
  2. Ahnert, D., D. Austin, M. Lee, D.F. Austin, C. Livini, W.L. Woodman, S.J. Opensaw, J.S.C. Smith, K. Porter & G. Dalton, 1996. Genetic diversity among elite sorghum inbred lines assessed with DNAmarkers and pedigree information. Crop Sci 36: 1385-1392.CrossRefGoogle Scholar
  3. Berquist, R.R., P. Rotar & W.C. Mitchell, 1974. Midge and anthracnose head blight resistance in sorghum. Trop Agric 51: 431-535.Google Scholar
  4. Cui, Y.X., G.W. Xu, C.W. Magill, K.F. Schertz & G.E. Hart, 1995. RFLP-based assay of Sorghum bicolorL. Moench genetic diversity. Theor Appl Genet 90: 787-796.CrossRefGoogle Scholar
  5. Deu, M., D. Gonzalez-de-Leon, J.-C. Glaszmann, I. Degremont, J. Chantereau, C. Lanaud & P. Hamon, 1994. RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88: 838-844.CrossRefGoogle Scholar
  6. Dudley, J.W., M.A. Saghai Maroof & G.K. Rufener, 1991. Molecular markers and grouping of parents in maize breeding programs. Crop Sci 31: 718-723.CrossRefGoogle Scholar
  7. Duncan, R.R., P.J. Bramel-Cox & F.R. Miller, 1991. Contributions of introduced sorghum germplasm to hybrid development in the USA. Crop Science Society of America special publication no 17. 17: 69-101.Google Scholar
  8. Franzmann, B.A., D.G. Butler, R.G. Henzell, D.S. Fletcher & J.H. Cutler, 1996. A sorghum industry scheme assigning midge resistance levels to commercial hybrids. In: M.A. Foale, R.G. Henzell & J. Kneipp (Eds.), Proceedings of the Third Australian Sorghum Conference, pp. 359-363. Australian Institute of Agricultural Science Occasional Publication 93. Melbourne, Australia.Google Scholar
  9. Goldshalk, E.B., M. Lee & K.R. Lamkey, 1990. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize. Theor Appl Genet 80: 273-280.Google Scholar
  10. Henzell, R.G., R.L. Brengman, F.D. Page, D.S. Fletcher, L. Van Slobe & G. Foster, 1986. Breeding for midge resistance in grain sorghum in Queensland. In: M.A. Foale & R.G Henzell (Eds.), Proceedings of the First Australian Sorghum Conference, pp. 7.10-7.18. Gatton, QLD, Feb 1986.Google Scholar
  11. Lee, M., E.B. Goldshalk, K.R. Lamkey & W.W. Woodman, 1989. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci 29: 1067-1071.CrossRefGoogle Scholar
  12. Melchinger, A.E., M. Lee, K.R. Lamkey, A.R. Hallauer & W.L. Woodman, 1990. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor Appl Genet 80: 488-496.CrossRefGoogle Scholar
  13. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273.PubMedCrossRefGoogle Scholar
  14. Peterson, G.C., 1995. Breeding for resistance to sorghum midge in the USA. In: K.F. Nwanze & O. Youm (Eds.), Panicle Insect Pests of Sorghum and Pearl Millet, pp. 149-157. Proceedings of an International Consultative Workshop ICRISAT. Pantancheru, India.Google Scholar
  15. Poelman, J.M., 1987. Breeding field crops. AVI Pub Co., Wesport, Connecticut.Google Scholar
  16. Simmonds, N.W., 1979. Principles of Crop Improvement. Longman, London and New York.Google Scholar
  17. Smith, O.S., J.S.C. Smith, S.L. Bowen, R.A. Tenborg & S.J. Wall, 1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis, and RFLPs. Theor Appl Genet 80: 833-840.CrossRefGoogle Scholar
  18. Sneep, J. & A.J.T. Hendriksen, 1979. Plant Breeding Prespectives. Centre for Agricultural Publishing and Documentation. Wageningen. The Netherlands.Google Scholar
  19. Stuber, C.W., S.E. Lincoln, D.W. Wolff, T. Helentjaris & E.S. Lander, 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.PubMedGoogle Scholar
  20. Tao, Y., J.M. Manners, M.M. Ludlow & R.G. Henzell, 1993. DNA polymorphisms in grain sorghum Sorghum bicolorL. Moench. Theor Appl Genet 86: 679-688.Google Scholar
  21. Tao, Y., C.L. McIntyre & R.G. Henzell, 1996. Application of molecular markers to Australian sorghum breeding programs. I. Construction of a RFLPmap using sorghum recombinant inbred lines. In: M.A. Foale, R.G. Henzell & J. Kneipp (Eds.), Proceedings of the Third Australian Sorghum Conference, pp. 359-363. Australian Institute of Agricultural Science Occasional Publication 93. Melbourne. Australia.Google Scholar
  22. Teetes, G.L. & J.W. Johnson, 1978. Insect resistance in sorghum. In: Proceedings 33rd Annual Corn and Sorghum Research Conference, pp. 214. Chicago, Ill.Google Scholar
  23. Widstrom, N.W., B.R. Wiseman & W.W. McMillan, 1972. Some gene effects conditioning resistance to midge and webworm injury in sorghum. Sorghum Newslett 15: 22-23.Google Scholar
  24. Xu, G.-W., C.W. Magill, K.F. Schertz & G.E. Hart, 1994. A RFLP linkage map of Sorghum bicolorL. Moench. Theor Appl Genet 89: 139-145.CrossRefGoogle Scholar
  25. Young, N.D. & S.D. Tanksley, 1989. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77: 353-359.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D.R. Jordan
    • 1
    • 2
  • Y.Z. Tao
    • 2
  • I.D. Godwin
    • 1
  • R.G. Henzell
    • 3
  • M. Cooper
    • 1
  • C.L. McIntyre
    • 2
  1. 1.Department of AgricultureThe University of QueenslandBrisbaneAustralia
  2. 2.CSIRO Tropical AgricultureSt. LuciaAustralia
  3. 3.Department of Primary IndustriesHermitage Research StationWarwickAustralia

Personalised recommendations