, Volume 100, Issue 1–3, pp 109–117

Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution

  • Josep M. Casacuberta
  • Samantha Vernhettes
  • Colette Audeon
  • Marie-Angèle Grandbastien


Retroviral replication is a very error-prone process. Replication of retroviruses gives rise to populations of closely related but different genomes referred to as ‘quasispecies’. This huge swarm of different sequences constitutes a reservoir of potentially useful genomes in case of an environmental change, endowing retroviruses with extreme adaptability. Retrotransposons are mobile genetic elements closely related to retroviruses, and retrotransposition is as error prone as retroviral replication. The Tnt1 retrotransposon is present in hundreds of copies in the genome of tobacco that show a high level of sequence heterogeneity. When Tnt1 is expressed, its RNA is not a single sequence but a population of sequences displaying a quasispecies-like structure. This population structure gives to Tnt1, as in the case of retroviruses, a high sequence plasticity and an adaptive capacity. We propose this adaptivity as the major reason for Tnt1 maintenance in Nicotiana genomes and we discuss in this paper the importance of sequence variability for Tnt1 evolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennetzen, J.L., 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.PubMedCrossRefGoogle Scholar
  2. Boeke, J.D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–368 in Mobile DNA, edited by D.E. Berg & P.M.M. Howe. American Society for Microbiology, Washington.Google Scholar
  3. Calza, R., E. Huttner, M. Vincentz, P. Rouzé, F. Galangau, H. Vaucheret, I. Chérel, C. Meyer, J. Kronenberger & M. Caboche, 1987. Cloning of DNAfragments complementary to nitrate reductase mRNA and encoding epitopes common to the nitrate reductase from higher plants. Mol. Gen. Genet. 209: 552–562.CrossRefGoogle Scholar
  4. Capel, J., L.M. Montero, J.M. Martinez-Zapater & J. Salinas, 1993. Non-random distribution of transposable elements in the nuclear genome of plants. Nucleic Acids Res. 21: 2369–2373.PubMedGoogle Scholar
  5. Casacuberta, J.M. & M.-A. Grandbastien, 1993. Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res. 21: 2087–2093.PubMedGoogle Scholar
  6. Casacuberta, J.M., S. Vernhettes & M.-A. Grandbastien, 1995. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 14: 2670–2676.PubMedGoogle Scholar
  7. Chalker, D.L. & S. Sandmeyer, 1992. Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev. 6: 117–128.PubMedGoogle Scholar
  8. Clarke, D.K., E. Duarte, S.F. Elena, A. Moya, E. Domingo & J. Holland, 1994. The red queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. USA 91: 4821–4824.PubMedCrossRefGoogle Scholar
  9. Csink, A.K. & J.F. McDonald, 1995. Analysis of Copia sequence variation within and between Drosophila species. Mol. Biol. Evol. 12: 83–93.PubMedGoogle Scholar
  10. Domingo, E. & J.J. Holland, 1994. Mutation rates and rapid evolution of RNA viruses, pp. 161–184 in The evolutionary biology of viruses, edited by S.S. Morse. Raven Press, Ltd., New York.Google Scholar
  11. Domingo, E., E. Martina-Salas, F. Sobrino, J.C. de la Torre, A. Portela, J. Ortin, C. Lopez-Galindez, P. Perez-Brena, N. Villanueva, R. Najera, S. VandePol, S. Steinhauer, N. DePolo & J.J. Holland, 1985. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance - a review. Gene 40: 1–8.PubMedCrossRefGoogle Scholar
  12. Duarte, E.A., I.S. Novella, S.C. Weaver, E. Domingo, S. Wain-Hobson, D.K. Clarke, A. Moya, S.F. Elena, J.C. de la Torre & J.J. Holland, 1994. RNA virus quasispecies: significance for viral disease and epidemiology. Infect. Agents Dis. 3: 201–214.PubMedGoogle Scholar
  13. Eigen, M. & C.K. Biebricher, 1988. Sequence space and quasi-species distribution, pp. 211–245 in RNA Genetics, edited by E. Domingo, J.J. Holland & P. Ahlquist. CRC Press, Inc. Boca Raton, Florida.Google Scholar
  14. Eigen, M. & P. Shuster, 1979. The hypercycle - Aprinciple of natural self-organization. Springer-Verlag. Heidelberg.Google Scholar
  15. Feuchter, A. & D. Mager, 1990. Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res. 18: 1261–1270.PubMedGoogle Scholar
  16. Gabriel A., M. Willems, E.H. Mules & J.D. Boeke, 1996. Replication infidelity during a single cycle of Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 93: 7767–7771.PubMedCrossRefGoogle Scholar
  17. Gause, G.F., 1971. The struggle for existence. Dover ed., New York.Google Scholar
  18. Gisquet P. & H. Hitier, 1961. La production de tabac: principes et methodes. Baillière et fils eds., Paris.Google Scholar
  19. Goodspeed, T.H., 1954. The genus Nicottiana. Chronica Botanica Company. Waltham, Mass.Google Scholar
  20. Grandbastien, M.-A., A. Spielmann & M. Caboche, 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.PubMedCrossRefGoogle Scholar
  21. Grandbastien, M.-A., C. Audeon, J.M. Casacuberta, P. Grappin, H. Lucas, C. Moreau & S. Pouteau, 1994. Functional analysis of the tobacco Tnt1 retrotransposon. Genetica 93: 181–189.PubMedCrossRefGoogle Scholar
  22. Ji, H., D.P. Moore, M.A. Blomberg, L.T. Braiterman, D.F. Voytas, G. Natsoulis & J.D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.PubMedCrossRefGoogle Scholar
  23. Levis, R.W., R. Ganesan, K. Houtchens, L. A. Tolar & F. Sheen, 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093.PubMedCrossRefGoogle Scholar
  24. Mhiri, C., J.B. Morel, S. Vernhettes, J.M. Casacuberta, H. Lucas & M.-A. Grandbastien, 1997. Regulation of the tobacco Tnt1 retro-transposon in heterologous species following pathogen-related stress. Plant Mol. Biol. 33: 257–266.PubMedCrossRefGoogle Scholar
  25. Moreau-Mhiri, C., J.B. Morel, C. Audèon, M. Ferault, M.-A. Grand-bastien & H. Lucas, 1996. Regulation of the tobacco Tnt1 retro-transposon in heterologous species following pathogen-related stress. Plant J. 9: 409–419.CrossRefGoogle Scholar
  26. Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52.PubMedCrossRefGoogle Scholar
  27. Pathak, V.K. & H.M. Temin, 1990. Broad spectrum of in vivo for-ward mutations and mutational hotspots in a retroviral shuttle vector after single replication cycle: deletions and deletions with insertions. Proc. natl. Acad. Sci USA 87: 6024–6028.PubMedCrossRefGoogle Scholar
  28. Pouteau, S., M.-A. Grandbastien & M. Boccara, 1994. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J. 5: 535–542.Google Scholar
  29. Pouteau, S., E. Hutner, M.-A. Grandbastein & M. Caboche, 1991. Specific expression of the Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911–1918.PubMedGoogle Scholar
  30. Vernhettes, S., M.-A. Grandbastien & J.M. Casacuberta, 1997. In vivo characterisation of transcriptional regulatory sequences involved in the defence-associated expression of the tabacco retrotransposon Tnt1. Plant. Mol. Biol. In Press.Google Scholar
  31. Wain-Hobson, S., 1993. The fastest genome evolution ever described: HIV variation in situ. Curr. Opin. Genet. Devel. 3: 878–883.CrossRefGoogle Scholar
  32. Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Josep M. Casacuberta
    • 1
  • Samantha Vernhettes
    • 2
  • Colette Audeon
    • 2
  • Marie-Angèle Grandbastien
    • 2
  1. 1.Dep. Genètica Molecular, CID-CSICBarcelonaSpain
  2. 2.Laboratoire de Biologie Cellulaire, INRAVersaillesFrance

Personalised recommendations