Advertisement

Aquaculture International

, Volume 5, Issue 4, pp 301–314 | Cite as

Impact of shellfish farming eutrophication on benthic macrophyte communities in the Thau lagoon, France

  • M.-L. De Casabianca
  • T. Laugier
  • D. Collart
Article

Abstract

In a large marine lagoon (Thau lagoon, southern France) with a shellfish farming dominant eutrophication, the macrophyte communities were sampled by six transects of three depths (1.5, 2.5 and 5 m) and their characteristics (species composition, diversity and biomass) were described in relation to environmental and sediment parameters. With increasing eutrophication (total inorganic nitrogen, 0.140-0.295 mg l-1; dissolved reactive phosphorus, 0.045-0.110 mg l-1; and N/P atomic ratio, 3-22), silt fraction and shell fragments in sediments increased (12-93 and 0-65% dry wt respectively). Different types of macrophytic communities could be defined in the shallow zone (1.5-2.5 m) corresponding to four main and successive stages of degradation. A pure eelgrass stand (Zostera marina and Z. noltii) and an eelgrass community colonized by macroalgae were observed in SW sites and could be distinguished by their sedimentary features. In sites (NE) more affected by eutrophication (fine-textured sediment), available incident light determined two main seaweed communities: an Ulva rigida community, outside the shellfish tables, and a Gracilaria bursa-pastoris community in the shellfish tables (lower incident light).

Eutrophication Lagoon Macrophyte communities Shellfish farming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ben Maiz, N. (1986) Flore Agale (Rhodophyta, Phaeophyceae, Chlorophyceae, Bryopsidophyceae) de l'Etang de Thau (Hérault). PhD thesis, University Montpellier, France, 345 pp.Google Scholar
  2. Calvet, L. (1905) Une esquisse de la faune et de la flore de la région de Cette. Travaux de l'Institut Zoologique de l'Université de Montpellier 15, 1–74.Google Scholar
  3. Casellas, B., Picot, C., Illes, S. and Bontoux, J. (1990) Structure spatiale des sels nutritifs au sein d'un écosystème lagunaire: l'étang de Thau. Water Research 24, 1479–1489.Google Scholar
  4. Cecere, E., Saracino, O.D., Fanelli, M. and Petrocelli, A. (1992) Presence of a drifting algal bed in the Mar Piccolo basin, Taranto (Ionan Sea, Southern Italy). Journal of Applied Phycology 4, 323–327.Google Scholar
  5. De Casabianca, M.L. (1977) Résultats préliminaires des expériences sur la biodéposition en milieu lagunaire. Rapport de la Commission Internationale pour la Mer Méditerranée 24, 91–92.Google Scholar
  6. De Casabianca, M.L. (1989) Dégradation des Ulves (Ulva rotundata, lagune du Prévost, France). Comptes rendus de l'Académie des Sciences Paris 308, 155–160.Google Scholar
  7. De Casabianca, M.L. (1996) France — The Mediterranean Lagoons. In, Marine Benthic Vegetation (eds W. Schramm and P.H. Nienhuis) Springer: Berlin, pp. 307–329.Google Scholar
  8. De Casabianca, M.L., Laugier, T., Collart, D. and Rigollet, V. (1994) Macrophytes populations and eutrophication (Thau lagoon, France). First results. Proceedings Okeanos, Montpellier, France, Okeanos, Maison de l'Environnement, Montpellier, 50–55.Google Scholar
  9. Galgani, F. and Bocquene, G. (1989) Utilisation des lecteurs de microplaques pour les mesures colorimétriques et enzymatiques. Océanis 15, 433–441.Google Scholar
  10. Gerbal, M. (1994) Analyse Spatio-Temporelle des Peuplements Phytobenthiques de Substrat Meuble de l'Etang de Thau (Hérault, France). PhD thesis, University Marseille-Luminy, France, 241 pp.Google Scholar
  11. Grenz, C., Plante-Cuny, M.R., Plante, R., Alliot, E., Baudinet, D. and Berland, B. (1991) Measurement of benthic nutrient fluxes in Mediterranean shellfish farm: a methodological approach. Oceanologica Acta 2, 195–201.Google Scholar
  12. Hamon, P.Y. and Tournier, H. (1981) Estimation de la biomasse en culture dans l'etang de Thau (été 1980). Bulletin des Pêches Maritimes 313, 1–23.Google Scholar
  13. Lapointe, B.E. and Tenore, K. (1981) Experimental outdoor studies with Ulva fasciata: interaction of light and nitrogen on nutrient uptake, growth and biochemical composition. Journal of Experimental Marine Biology and Ecology 53, 135–152.Google Scholar
  14. Lapointe, B.E., Dawes, C.J. and Tenore, K.R. (1984) Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae (Gigartinales: Rhodophyta). II. Nitrate uptake and levels of pigments and chemical constituents. Marine Biology 80, 171–178.Google Scholar
  15. Lundin, C.G. and Linden, O. (1993) Coastal ecosystems: attempts to manage a threatened resource. Ambio 22, 468–476.Google Scholar
  16. Millet, B. (1989) Fonctionnement hydrodynamique du bassin de Thau. Validation écologique d'un modèle numérique de circulation (programme ECOTHAU). Oceanologica Acta 12, 37–46.Google Scholar
  17. Millet, B. and Cecchi, P. (1992) Wind-induced hydrodynamic control of the phytoplankton biomass in a lagoon ecosystem. Limnology and Oceanography 37, 140–146.Google Scholar
  18. Munda, I.M. (1993) Changes and degradation of the seaweed stands in the Northern Adriatic. Hydrobiologia 260/261, 239–253.Google Scholar
  19. Nienhuis, P.H. (1978) Dynamics of benthic algal vegetation and environment in Dutch estuarine salt marshes, studied by means of permanent quadrats. Vegetatio 38, 103–112.Google Scholar
  20. Outin, V. (1990) Ecophysiologie de l'huitre Cassostreas gigas en Conditions Naturelles dans une Lagune Méditerranéenne (Etang de Thau): Rôle dans les Transferts Energétiques et Impact des Populations sur le Milieu. PhD thesis, University Paris VI, France, 226 pp.Google Scholar
  21. Rosenberg, G. and Ramus, J. (1982) Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): photosynthesis and antenna composition. Marine Ecology Progress Series 8, 233–241.Google Scholar
  22. Sfriso, A., Marcomini, A. and Pavoni, B. (1987) Relationships between macroalgae biomass and nutrient concentrations in a hypertrophic area of the Venice lagoon. Marine Environnemental Research 22, 297–312.Google Scholar
  23. Sfriso, A., Marcomini, A., Pavoni, B. and Orio, A.A. (1993) Species composition, biomass and net primary production in shallow coastal waters: the Venice lagoon. Bioresource Technology 44, 235–250.Google Scholar
  24. Sfriso, A., Marcomini, A. and Pavoni, B. (1994) Gracilaria distribution, production and composition in the lagoon of Venice. Bioresource Technology 50, 165–173.Google Scholar
  25. Strickland, J.D.H. and Parsons, T.R. (1972) A Practical Handbook for Seawater Analysis. Fisheries Research Board of Canada: Ottawa, 310 pp.Google Scholar
  26. Tewari, A. and Joshi, H. (1988) Effects of domestic sewage and industrial effluents on biomass and species diversity of seaweeds. Botanica Marina 31, 389–397.Google Scholar
  27. Tournier, H., Hamon, P.Y. and Landrein, S. (1983) Conditions de milieu moyennes dans l'étang de Thau établies sur les observations réalisées de 1974 à 1980. Rapport de la Commission Internationale pour la Mer Méditerranée 28, 195–200.Google Scholar
  28. Viaroli, P., Naldi, M., Christian, R.R. and Fumagalli, I. (1993) The role of macroalgae and detritus in the nutrient cycles in a shallow-water dystrophic lagoon. Verhandlungen International Verein der Limnologie 25, 1048–1051.Google Scholar
  29. Zaouali, J. (1977) Le Lac de Tunis: facteurs climatiques, physico-chiminiques et crises dystrophiques. Bulletin de l'Office national des Pêches Tunisie 1, 37–49.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M.-L. De Casabianca
    • 1
  • T. Laugier
    • 1
  • D. Collart
    • 1
  1. 1.CNRSStation Mediterraneenne de l'Environnement LittoralSeteFrance

Personalised recommendations