Microstructure Evolution of Nonhydrolytic Alumina Gels

  • G.S. Grader
  • Y. de Hazan
  • Y. Cohen
  • D. Bravo-Zhivotovskii
Article

Abstract

Nonhydrolitic sol-gel processes of aluminum chloride and aluminum bromide with isopropyl ether and aluminum sec-butoxide were performed at various temperatures. Based on the Arrhenius type variation of the gelation time with temperature, activation energies for the gelation were found to be in the range 19–25 Kcal/mol range. The energies were found to be sensitive to the nature of the aluminum ligands and the chemical scheme. Due to the large activation energy, it is possible to stop the reaction at any time before gelation by cooling the sol to room temperature. Small angle X-ray scattering (SAXS) of sols from the AlClAlCl3/Pr\(_2^i \)O system shows unique development of a fractal like structure with nanometer scale order, demonstrated by discrete peaks in the SAXS data. A fractal dimension D = 1.64 was found. An aggregation scheme is proposed to explain this phenomenon. A fractal dimension of 2.4 without small scale ordering found for xerogels prepared from the AlCl3/ASB system reflects the effect of the different precursors on the microstructure of nonhydrolytic gels.

alumina gels nonhydrolytic sol-gel fractal structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
  2. 2.
    Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics, and Specialty Shapes, edited by L.C. Klein (Noyes, Park Ridge, New Jersey, 1988).Google Scholar
  3. 3.
    B.E. Yoldas, Amer. Ceram. Soc. Bull. 54, 286 (1975); J. Mat. Sci. 10, 1856 (1975).Google Scholar
  4. 4.
    Y. Mizushima and M. Hori, J. Non-Cryst. Solids 167, 1 (1994).Google Scholar
  5. 5.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).Google Scholar
  6. 6.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).Google Scholar
  7. 7.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, in Better Ceramics through Chemistry VI, Mat. Res. Soc. Symp. Proc. 346, 345 (1994).Google Scholar
  8. 8.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 170, 234 (1994).Google Scholar
  9. 9.
    L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 117 (1990).Google Scholar
  10. 10.
    S. Keysar, Y. De Hazan, Y. Cohen, T. Aboud, and G.S. Grader, J. Mat. Res., (in press).Google Scholar
  11. 11.
    W.V. Rausch and H.D. Bale, J. Chem. Phys. 40, 3391 (1964).Google Scholar
  12. 12.
    D.W. Schaefer, R.A. Shwllman, K.D. Keefer, and J.E. Martin, Physica. 140A, 105 (1986).Google Scholar
  13. 13.
    M.W. Colby, A. Osaka, and J.D. Mackenzie, J. Non-Cryst. Solids 99, 129 (1988).Google Scholar
  14. 14.
    J. Sanchez, M. Reese, and A. Mccormick, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 263 (1990).Google Scholar
  15. 15.
    S. Acosta, R. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Sol-Gel. Sci. Tech. 2, 25 (1994).Google Scholar
  16. 16.
    D.W. Schaefer, K.D. Keefer, J.H. Aubert, and P.B. Rand, in Science of Chemical Processing, edited by L.L. Hench and D.R. Ulrich (Wiley, New York, 1986), p. 140.Google Scholar
  17. 17.
    D.W. Schaefer, MRS Bulletin 4, 49 (1994).Google Scholar
  18. 18.
    J.C. Pouxviel, J.P. Boilot, A. Lecomete, and A. Dauger, J. Phisique. 48, 921 (1987).Google Scholar
  19. 19.
    D.W. Schaefer, in Revue de Physique Appliquee, Colloque C4, edited by R. Vacher, J. Phallippou, J. Pelous, and T. Woignier (1989), p. 121.Google Scholar
  20. 20.
    P. Meakin, Ann. Res. Phys. Chem. 39, 237 (1988).Google Scholar
  21. 21.
    J.E. Martin and A.J. Hurd, J. Appl. Cryst. 20, 61 (1987).Google Scholar
  22. 22.
    Yachin Cohen and Edwin L. Thomas, Macromolecules 21, 436 (1988).Google Scholar
  23. 23.
    J.E. Martin and J. Wilcoxon, in Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc. 180, 199 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • G.S. Grader
    • 1
  • Y. de Hazan
    • 1
  • Y. Cohen
    • 1
  • D. Bravo-Zhivotovskii
    • 2
  1. 1.Chemical Engineering DepartmentTechnionHaifaIsrael
  2. 2.Chemistry DepartmentTechnionHaifaIsrael

Personalised recommendations