, 100:85 | Cite as

Constitutive heterochromatin and transposable elements in Drosophila melanogaster

  • Patrizio Dimitri


Several families of transposable elements (TEs), most of them belonging to the retrotransposon catagory, are particularly enriched in Drosophila melanogaster constitutive heterochromatin. The enrichment of TE-homologous sequences into heterochromatin is not a peculiar feature of the Drosophila genome, but appears to be widespread among higher eukaryotes. The constitutive heterochromatin of D. melanogaster contains several genetically active domains; this raises the possibility that TE-homologous sequences inserted into functional heterochromatin compartments may be expressed. In this review, I present available data on the genetic and molecular organization of D. melanogaster constitutive heterochromatin and its relationship with transposable elements. The implications of these findings on the possible impact of heterochromatic TEs on the function and evolution of the host genome are also discussed.

heterochomatin transposable elements Drosophila 


  1. Appels, R. & W.J. Peacock, 1978. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila. Int. Rev. Cytol. 8: 69–126 (Suppl.).Google Scholar
  2. Berghella L. & P. Dimitri, 1996. The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and tran-scriptionally active in the salivary gland chromocenter. Genetics 144: 117–125.PubMedGoogle Scholar
  3. Biggs, H.W., H.K. Zavitz, B. Dikinson, A. Van der Straten, D. Brun-ner, E. Hafen & L.S. Zipursky, 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduc-tion pathway. EMBO J. 13: 1628–1635.PubMedGoogle Scholar
  4. Bonaccorsi, S. & A. Lohe, 1991. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between the satellite sequences and fertility factors. Genetics 129: 177–189.PubMedGoogle Scholar
  5. Brutlag, D.L. & M. Carlson, 1978. One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell 15: 733–742.PubMedCrossRefGoogle Scholar
  6. Bucheton, A., C. Vaury, M.-C. Chaboissier, P. Abad A. Pelisson & M. Simonelig, 1992. I elements and the Drosophila genome. Genetica 86: 175–190.PubMedCrossRefGoogle Scholar
  7. Busseau, I., M.C. Chaboissier, A. Pelisson & A. Bucheton, 1994. I factors in Drosophila melanogaster: transposition under control. Genetica 93: 101–116.PubMedCrossRefGoogle Scholar
  8. Cabot, E.L., P. Doshi, M-L. Wu & C-I. Wu, 1993. Population genet-ics of tandem repeats in centromeric heterochromatin: unequal crossing over and chromosomal divergence at the Responder locus of Drosophila melanogaster. Genetics 135: 477–487.PubMedGoogle Scholar
  9. Caizzi, R., C. Caggese & S. Pimpinelli, 1993. Bari-1,anew transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335–345.PubMedGoogle Scholar
  10. Carmena M. & C. Gonzales, 1995. Transposable elements map in a conserved pattern distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684.PubMedGoogle Scholar
  11. Carlson, M. & D. Brutlag, 1978. One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell 15: 733–742.PubMedCrossRefGoogle Scholar
  12. Charlesworth B., P. Jarne & S. Assimacopoulos, 1994. The distribu-tion of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. element abun-dances in heterochromatin. Genet. Res., Camb. 64: 183–197.Google Scholar
  13. Craig-Holmes, A.P. & M.W. Shaw, 1971. Polymorphism of human constitutive heterochromatin. Science 174: 702–704.PubMedGoogle Scholar
  14. Csink, A.K., R. Linsk & J.A. Birchler, 1994. The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138: 153–163.PubMedGoogle Scholar
  15. Devlin, R.H., B. Bingham & B.T. Wakimoto, 1990. The organiza-tion and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.PubMedGoogle Scholar
  16. Dimitri, P., 1991. Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster.Genetics 127: 553–564.PubMedGoogle Scholar
  17. Dimitri, P., B. Arca, L. Berghella & E. Mei, 1997. High genetic instability of heterochromatin after tranposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 8052–8057.PubMedCrossRefGoogle Scholar
  18. Di Nocera, P., C. Contursi & G. Minchiotti, 1994. LINE-related elements in Drosophila melanogaster. Genetica 94: 173–180.PubMedCrossRefGoogle Scholar
  19. Dorer, D. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophi-la. Cell 77: 993–1002.PubMedCrossRefGoogle Scholar
  20. Eberl, D., B.J. Duyf & A.H. Hilliker, 1993. The role of heterochro-matin in the expression of a heterochromatic gene, the rolled gene of Drosophila melanogaster. Genetics 134: 277–292.PubMedGoogle Scholar
  21. Eickbush D.G., T.H. Eickbush & J.H. Werren, 1992. Molecular char-acterization of repetitive DNA sequences from a B chromosome. Chromosoma 101: 575–583.PubMedCrossRefGoogle Scholar
  22. Falk, R., 1961. Nitrogen-treatment effects on rearrangement-induction patterns in Drosophila melanogaster. Int. J. Rad. Biol. 4: 437–455Google Scholar
  23. Gall, G.J., E.H. Cohen & M.L. Polan, 1971. Repetitive DNA sequences in Drosophila. Chromosoma 33: 319–344.PubMedCrossRefGoogle Scholar
  24. Gardner, M.B., C.A. Kozac & S.J. O'Brien, 1991. The lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends in Genetics 7: 22–27.PubMedCrossRefGoogle Scholar
  25. Gatti, M. & S. Pimpenelli, 1983. Cytological and genetical analysis of the Y chromosome of Drosophila melanogaster. Chromosoma 88: 349–373.CrossRefGoogle Scholar
  26. Gatti, M. & S. Pimpinelli, 1992. Functional elements in Drosophila melanogaster heterochromatin. Ann. Rev. Genet. 26: 239–275.PubMedCrossRefGoogle Scholar
  27. Gatti, M., S. Bonaccorsi & S. Pimpinelli, 1994. Looking at Drosophi-la mitotic chromosomes. Meth. Cell Biol. 44: 371–391.CrossRefGoogle Scholar
  28. Gutknecht, J., D. Sperlich & L. Bachmann, 1995. A species spe-cific satellite DNA family of Drosophila subsilvestris appearing predominantly in B chromosomes. Chromosoma 103: 539–544.PubMedGoogle Scholar
  29. John, B., 1988. The biology of heterochromatin, pp. 1–128 In: Heterochromatin: Molecular and structural aspects,R.S. Verma (ed.), Cambridge University Press, Cambridge.Google Scholar
  30. Halfer C., 1981. Interstrain heterochromatin polymorphisms in Drosophila melanogaster. Chromosoma 84: 195–206.PubMedCrossRefGoogle Scholar
  31. Hochstenbach R., H. Harhangi, K. Schouren, P. Bindels, R. Suijker-buijk & W. Hennig, 1996. Transcription of gypsy elements in a Y-chromosome male fertility gene of Drosophila hydei. Genetics 142: 437–446.PubMedGoogle Scholar
  32. Howe, M., P. Dimitri, M. Berloco & B.T. Wakimoto, 1995. Cis-effects on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.PubMedGoogle Scholar
  33. Heitz, F., 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69: 762–818.Google Scholar
  34. Heitz, F., 1934. Uber alpha-Heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol. Zentralbl. 45: 588–609.Google Scholar
  35. Hilliker, A.J., 1976. Genetic analysis of the centromeric heterochro-matin of chromosome 2 of Drosophila melanogaster. Deficiency mapping of EMS-induced lethal complementation groups. Genet-ics 83: 765–782.Google Scholar
  36. Hutchinson, C.A., S.C. Hardies, D.L. Loeb, W.R. Shehee & M.H. Edgell, 1989. LINEs and related retroposons: Long interspersed repeated sequences in the eucaryotic genome.In Mobile DNA. Am. Society for Microbiology, Washington, D.C.Google Scholar
  37. Jones R.N. & H. Rees, 1982. B chromosomes. Academic Press, NewYork.Google Scholar
  38. Lankenau, D.H., 1992. The retrotransposon family micropia in Drosophila species. Genetica 86: 230–239.Google Scholar
  39. Lansman, R.A., R.O. Shade, T.A. Grigliatti & H.W. Brock, 1987.Evolution of P transposable elements: sequences of Drosophila nebulosa P elements. Proc. Natl. Acad. Sci USA 84: 6491–6495.PubMedCrossRefGoogle Scholar
  40. Le, M.-H., D. Diricka & G.H. Karpen, 1995. Islands of com-plex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.PubMedGoogle Scholar
  41. Lim J.K. & M.J. Simmons, 1994. Gross chromosome rearrange-ments mediated by transposable elements in Drosophila melanogaster. BioEssays 4: 269–275.CrossRefGoogle Scholar
  42. Lohe A.R. & H.J. Hilliker, 1995. Return of the H-word (heterochro-matin). Current Opin. Genet. Develop. 5: 746–755.CrossRefGoogle Scholar
  43. Lohe, A.R., A.J. Hilliker & P.A. Roberts, 1993. Mapping sim-ple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.PubMedGoogle Scholar
  44. Lohe, A.R., E.N. Moriyama, D.A. Lidholm & D.L. Hartl, 1995. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol. Biol. Evol. 12: 62–72.PubMedGoogle Scholar
  45. Marcais, B., J.P. Charlieu, B. Allain, E. Brun, M. Bellis & G. Roizes, 1991. On the mode of evolution of alpha satellite DNA in human populations. J. Mol. evol. 33: 42–48.PubMedCrossRefGoogle Scholar
  46. McDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Develop. 3: 855–864.CrossRefGoogle Scholar
  47. Miklos, G.L.G., & J.N. Cotsell, 1990. Chromosome structure at interfaces between major chromatin types: _-and_-heterochromatin. BioEssays 12: 1–7.PubMedCrossRefGoogle Scholar
  48. Miklos, G.L.G., M. Yamomoto, J. Davies & V. Pirrotta, 1988. Micro-cloning reveals high frequency of repetitive sequences charac-teristic of chromosome 4 and-heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 2051–2055.PubMedCrossRefGoogle Scholar
  49. Montgomery E., B. Charlesworth & C. Langley, 1987. A test for the role of natural selection in the stabization of transposable element copy number in a population of Drosophila melanogater. Genet. Res. 49: 31–41.PubMedCrossRefGoogle Scholar
  50. Moore J.K. & J.E. Haber, 1996. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383: 644–646.PubMedCrossRefGoogle Scholar
  51. Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot, & K.L. Traverse, 1996. Drosophila telomeres: new views on chromo-some evolution. Trends Genet. 12: 48–52.PubMedCrossRefGoogle Scholar
  52. Pearce, P.R., U. Pich, G. Harrison, A.J. Flavell, J.S. Heslop-Harrison, I. Schubert & A. Kumar, 1996. The Ty-1 copia group retrotrans-posons of Allium cepa are distributed throughout the chromo-somes but are enriched in the terminal heterochromatin. Chro-mosome Res. 4: 357–364.CrossRefGoogle Scholar
  53. Pelliccia F., A. Micheli & G. Olivieri, 1985. Inter-and intra-chromosomal distribution of chromatid breaks induced by X-rays during G2 in human lynphocytes. Mutation Res. 150: 293–298.PubMedGoogle Scholar
  54. Pimpinelli S., D. Pignone, G. Santini & G. Olivieri, 1976. Mutagen specificity in the induction of chromosomal aberrations in somatic cells of Drosophila melanogaster. Genetics 85: 249–257.Google Scholar
  55. Pimpinelli S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transpos-able elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.PubMedCrossRefGoogle Scholar
  56. Pimpinelli S. & P. Dimitri, 1989. Cytogenetic organization of the Rsp (Responder) locus in Drosophila melanogaster. Genetics 121: 765–772.PubMedGoogle Scholar
  57. Reuter, G., I. Wolff & B. Friede, 1985. Functional properties of the heterochromatic sequences inducing w m 4 position effect varie-gation in Drosophila melanogaster. Chromosoma 93: 132–139.CrossRefGoogle Scholar
  58. Roseman, R.R., E.A. Johnson, C.K. Rodesch, M. Bjerke, R.N. Nagoshi, P.K. Geyer, 1995. A P element containing suppressor of Hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics 141: 1061–1074.PubMedGoogle Scholar
  59. Sheveleyov, Y.Y., M.D. Balakireva & V.A. Gvozdev, 1989. Hete-rochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98: 117–122CrossRefGoogle Scholar
  60. Steinemann M. & S. Steinemann, 1992. Degenerating Y chromo-somes of Drosophila miranda: A trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89: 7591–7595 (1992)PubMedCrossRefGoogle Scholar
  61. Taruscio, D. & L. Manuelidis, (1991). Integration preferences of endogenous retroviruses. Chromosoma 101: 141–156.PubMedCrossRefGoogle Scholar
  62. Teng, S.-C., B. Kim & A. Gabriel, 1996. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.PubMedCrossRefGoogle Scholar
  63. Traverse, L.K. & M.L. Pardue, 1989. Studies of He-T DNA sequences in the pericentric regions of Drosophila melanogaster. Chromosoma 97: 261–271.PubMedCrossRefGoogle Scholar
  64. Vaury, C., A. Bucheton & A. Pelisson, 1989. The _-heterochromatic sequences flanking the I elements are themselves defective trans-posable elements. Chromosoma 98: 215–224.PubMedCrossRefGoogle Scholar
  65. von Stenberg, R.M., G.E. Novick, G.-P. Gao & R.J. Herrera, 1992. Genome canalization: the coevolution of transposable and inter-spersed repetitive elements with single copy DNA. Genetica 86: 106–137.Google Scholar
  66. Wakimoto, B.T. & M.G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of D. melanogaster. Genetics 125: 141–154.PubMedGoogle Scholar
  67. Weiler, K.S. & B.T. Wakimoto, 1995. Heterochromatin and gene expression in Drosophila. Ann. Rev. Genet. 29: 577–605.PubMedCrossRefGoogle Scholar
  68. Yamamoto, M., A. Mitchelson, M. Tudor, K. O'Hare, J. Davies & G.L. Miklos, 1990. Molecular and cytogenetic analisys of the heterochromatin-euchromatin junction region of the Drosophi-la melanogaster X chromosome using cloned DNA sequences. Genetics 125: 821–832.PubMedGoogle Scholar
  69. Young, B.S., A. Passion, K.L. Traverse, C. French, & M.L. Par-due, 1983. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 34: 85–94.PubMedCrossRefGoogle Scholar
  70. Zhang, P. & A.C. Spradling, 1994. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc. Natl. Acad. Sci. USA 91: 3539–3543.PubMedCrossRefGoogle Scholar
  71. Zhang, P. & A.C. Spradling, 1995. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139: 659–670.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Patrizio Dimitri
    • 1
  1. 1.Dipartimento di Genetica e Biologia MolecolareUniversità La SapienzaRomaItaly

Personalised recommendations