Designs, Codes and Cryptography

, Volume 7, Issue 1–2, pp 101–110 | Cite as

Authentication Schemes, Perfect Local Randomizers, Perfect Secrecy and Secret Sharing Schemes

  • C. J. Mitchell
  • F. C. Piper
  • M. Walker
  • P. Wild


In this paper we use results on authentication schemes to derive alternative proofs for results on perfect local randomnes in pseudo-random sequences, on block cipher systems which afford perfect secrecy against known plaintext attacks and on secret sharing schemes.


Data Structure Information Theory Discrete Geometry Secret Sharing Authentication Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Blakley, Safeguading cryprographic keys, Proc AFIPS 1979 Natl. Conputer Conf, New York, 48 (1979) pp. 113–317.Google Scholar
  2. 2.
    E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. of Cryptology, Vol. 5 (1992) pp. 153–166.Google Scholar
  3. 3.
    E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, Codes which detect deception, Bell System Technical Journal, Vol. 53 (1974) pp. 405–424.Google Scholar
  4. 4.
    P. Godlewski and C. Mitchell, Key-minimal cryptosystems for unconditional secrecy, J. of Cryptology, Vol. 3 (1990) pp. 1–25.Google Scholar
  5. 5.
    U. M. Maurer and J. L. Massey, Local randomness in pseudo-random sequences, J. of Cryptology, Vol. 4 (1991) pp135–149.Google Scholar
  6. 6.
    J. L. Massey, Cryptography-a selective survey, in Digital Communications, C. Biglieri and C. Prati (Eds.), Elsevier (North-Holland) (1986) pp 3–21.Google Scholar
  7. 7.
    C. Mitchell, M. Walker and P. Wild, The combinatories of perfect authentication schemes, SIAM J. Disc. Math., Vol. 7 (1994) pp. 102–107.Google Scholar
  8. 8.
    U. Rosenbaum, A lower bound on authentication after having observed a sequence of messages, J. of Cryptology, Vol. 6 (1993) pp. 135–156.Google Scholar
  9. 9.
    A. Shamir, How to share a secret, Comm. of the ACM, Vol. 22 (1979) pp. 612–613.Google Scholar
  10. 10.
    C. E. Shannon. Communication theory of secrecy systems, Bell System Technical Journal, Vol. 28 (1949) pp. 656–715.Google Scholar
  11. 11.
    G. J. Simmons, A game theoretical model of digital message authentication, Congressus Numerantium, Vol. 34 (1982) pp. 413–424.Google Scholar
  12. 12.
    G. J. Simmons, Authentication theory/coding theory, Advances In Cryptology: Crypto 84, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 196 (1985) pp411–431.Google Scholar
  13. I3.
    G. J. Simmons, Robust shared secret schemes or ‘how to be sure you have the right answer even though you don't know the question’, Congressus Numerantium, Vol. 68 (1989) pp. 215–248.Google Scholar
  14. 14.
    G. J. Simmons, How to (really) share a secret, Advances in Cryptology: Crypto 88, Lecture Notes in Computer Science, Springer Verlag, Berlin, 403 (1990) pp. 390–448.Google Scholar
  15. 15.
    G. J. Simmons, W.-A. Jackson, and K. M. Martin, The geometry of shared secret schemes, Bull of the ICA, Vol. 1 (1991) pp. 71–78.Google Scholar
  16. 16.
    M. Walker, Information-theoretic bounds for authentication schemes, J. of Cryptology (1990) pp. 131–143.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. J. Mitchell
    • 1
  • F. C. Piper
    • 1
  • M. Walker
    • 1
    • 2
  • P. Wild
    • 1
  1. 1.Information Security Group, Royal HollowayUniversity of LondonLondon
  2. 2.Vodafone Group plcThe CourtyardNewbury, BerksLondon

Personalised recommendations