Journal of Chemical Ecology

, Volume 28, Issue 2, pp 333–341 | Cite as

Characterization and Toxicity of Amanita cokeri Extract



The nonprotein amino acids 2-amino-3-cyclopropylbutanoic acid and 2-amino-5-chloro-4-pentenoic acid were isolated from the mushroom Amanita cokeri. The cyclopropyl amino acid is toxic to the fungus Cercospora kikuchii, the arthropod Oncopeltus fasciatus (milk weed bug), and the bacteria Agrobacterium tumefaciens, Erwinia amylovora, and Xanthomonas campestris. Toxicity to bacteria was reversible by addition of isoleucine to the medium. No toxicity was observed for 2-amino-5-chloro-4-pentenoic acid.

Basidiomyces Amanita Lepidella 2-amino-3-cyclopropylbutanoic acid 2-amino-5-chloro-4-pentenoic acid Oncopeltus Cercospora Agrobacterium Erwinia Xanthomonas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chilton, W. S. and Drehmel, D. C. 2001. Cyclopropyl amino acids of Amanita. Biochem. Syst. Ecol. 29:853–855.Google Scholar
  2. Chilton, W. S. and Tsou, G. 1972. A chloro amino acid from Amanita solitaria. Phytochemistry 11:2853–2857.Google Scholar
  3. Chilton, W. S. and Tsou, G. 1973. The unsaturated norleucines of Amanita solitaria: Chemical and pharmacological studies. Lloydia 36:169–173.Google Scholar
  4. Chilton, W. S., Tsou, G., and Kirk, L. 1968. A naturally-occuring allenic amino acid. Tetrahedron Lett. 60: 6283–6284.Google Scholar
  5. Drehmel, D. C., Moncalvo, J. M., and Vilgalys, R. 1999. Molecular phylogeny of Amanita based on large-subunit ribosomal DNA sequences: Implications for taxonomy and character evolution. Mycologia 91:610–618.Google Scholar
  6. Hatanaka, S. 1975. Identification of 2-amino-4,5-hexadienoic acid from Amanita pseudoporphyria Hongo. Lloydia 38:273–274.Google Scholar
  7. Hatanaka, S. I. 1992. Amino acids from mushrooms. Prog. Chem. Org. Nat. Prod. 59:1–139.Google Scholar
  8. Hatanaka, S. and Kawakami, K. 1980. Isolation and identification of L-2-amino-4,5-hexadienoic acid from Amanita neoovoidea. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 30:147–150.Google Scholar
  9. Hatanaka, S., Kaneko, S., Niimura, Y., Kinoshita, F., and Soma, G. 1974. L-2-Amino-4-chloro-4-pentenoic acid, a new amino acid from Amanita pseudoporphyria. Tetrahedron Lett. 45:3931–3932.Google Scholar
  10. Hatanaka, S., Niimura, Y., and Takishima, K. 1985. Non-protein amino acids of unsaturated norleucine-type in Amanita pseudoporphyria. Trans. Mycol. Soc. Jpn. 26:61–68.Google Scholar
  11. Hatanaka, S., Furukawa, J., Aoki, T., Akatsuka, H., and Nagasawa, E. 1994. (2S)-2-Amino-5-chloro-4-hydroxy-5-hexenoic acid, a newchloro amino acid, and related compounds from Amanitagymnopus. Mycoscience 35:391–394.Google Scholar
  12. Hatanaka, S., Okada, K., and Nagasawa, E. 1995. Isolation and identification of (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid from an Amanita of the section Roanokenses. Mycoscience 36:395–397.Google Scholar
  13. Hatanaka, S., Niimura, Y., Takishima, K., and Sugiyama, J. 1998. (2R)-2-Amino-6-hydroxy-4-hexynoic acid, and related amino acids in the fruiting bodies of Amanita miculifera. Phytochemistry 49:573–578.Google Scholar
  14. Lehninger, A. L. 1975. Biochemistry. Worth Publication, New York, pp. 833–834.Google Scholar
  15. Meek, J. S. and Rowe, J. W. 1955. The synthesis of β-cyclopropyl-α-aminopropionic acid. J. Am. Chem. Soc. 77:6675–6678.Google Scholar
  16. Moncalvo, J. M., Drehmel, D. C., and Vilgalys, R. 2000. Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita: Phylogenetic implications. Mol. Phylogenet. Evol. 16:48–63.Google Scholar
  17. Moriguchi, M., Hara, Y., and Hatanaka, S. 1987. Antibacterial activity of L-2-amino-4-chloro-4-pentenoic acid isolated from Amanita pseudoporphyria Hongo. J. Antibiot. Tokyo 40:904–906.Google Scholar
  18. Ohta, T., Nakajima, S., Sato, Z., Aoki, T., Hatanaka, S., and Nozoe, S. 1986. Cyclopropylalanine, an antifungal amino acid of the mushroom Amanita virgineoides Bas. Chem. Lett. 1986:511–512.Google Scholar
  19. Ohta, T., Nakajima, S., Hatanaka, S., Yamamoto, M., Shimmen, Y., Nishimura, S., Yamaizumi, Z., and Nozoe, S. 1987. A chlorohydrin amino acid from Amanita abrupta. Phytochemistry 26:565–566.Google Scholar
  20. Ohta, T., Matsuda, M., Takahashi, T., Nakajima, S., and Nozoe, S. 1995. (S)-cis-2-Amino-5-chloro-4-pentenoic acid from the fungus Amanita virgineoides. Chem. Pharm. Bull. 43:899–900.Google Scholar
  21. Pelizzari, V., Feifel, E., Rohrmoser, M., Gstraunthaler, G., and Moser, M. 1994. Partial purification and characterization of a toxic component of Amanita smithiana. Mycologia 86:555–560.Google Scholar
  22. Scannell, J. P. and Pruess, D. L. 1975. Naturally occurring amino acid and oligopeptide antimetabolites, in B. Weinstein (ed.), Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Vol. 3, pp. 189–244, Marcel Dekker, New York.Google Scholar
  23. Yamaura, Y., Fukuhara, M., Takabatake E., Ito, N., and Hashimoto, T. 1986. Hepatotoxic action of a poisonous mushroom, Amanita abrupta in mice and its toxic component. Toxicology 38:161–173.Google Scholar
  24. Yoshimura, H., Takegami, K., Doe, M., Yamashita, T., Shibata, K., Wakabayashi, K., Soga, K., and Kamisaka, S. 1999. Alpha amino acids from a mushroom, Amanita castanopsidis Hongo, with growth-inhibiting activity. Phytochemistry 52:25–27.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of BotanyNorth Carolina State UniversityRaleigh

Personalised recommendations