Molecular and Cellular Biochemistry

, Volume 229, Issue 1–2, pp 107–111 | Cite as

Changes in the antioxidant content of mononuclear leukocytes from mice with endotoxin-induced oxidative stress

  • Víctor Manuel Víctor
  • Noelia Guayerbas
  • Mónica De la Fuente

Abstract

Oxidative stress, associated with a high production of reactive oxygen species (ROS) by immune cells, is involved in the endotoxic shock caused by endotoxin. This oxidative stress is linked to the inability of the immune cells to maintain adequate levels of antioxidants with free radical-scavenging action. Glutathione (GSH) and ascorbic acid (AA) are intracellular and extracellular antioxidants (ROS scavengers) that improve the leukocyte functions. Therefore, in the present work we have determined the reduced GSH and AA content in axillary nodes, spleen, thymus and peritoneal mononuclear leukocytes from BALB/c mice subjected to lethal endotoxic shock produced by intraperitoneal injection of E. coli lipopolysaccharide (LPS, 100 mg/kg), at several times (0, 2, 4, 12 and 24 h) after LPS injection. Endotoxic shock decreased the levels of AA in the leukocytes from the three organs as well as the levels of GSH in axillary nodes and spleen cells while it increased the GSH levels in thymus and peritoneum. These results are in agreement with the oxidative stress and the altered function previously observed in those leukocytes, and they suggest that antioxidant administration may be useful for the treatment of endotoxic shock and other oxidative stress situations with altered immunological responses.

oxidative stress leukocytes endotoxin antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halliwell B: Oxidant and human disease: Some new concepts. FASEB J 1: 358–364, 1987Google Scholar
  2. 2.
    Laskin DL, Pendino KJ: Macrophages and inflammatory mediators in tissue injury. Ann Rev Pharmacol Toxicol 35: 655–677, 1995Google Scholar
  3. 3.
    Muller F, Svardal AM, Norday I, Berge RK, Aukrust P, Froland SS: Virological and immunological effects of antioxidant treatment in patients with HIV infection. Eur J Clin Invest 30: 905–914, 2000Google Scholar
  4. 4.
    Tessier D, Khalil A, Fulop T: Effects of an oral glucose challenge on free radicals/antioxidants balance in an older population with type II diabetes. J Gerontol Series A Biol Sci and Med Sci 54: 541–545, 1999Google Scholar
  5. 5.
    De la Fuente M, Víctor VM: Ascorbic acid and n-acetylcysteine improve in vitro the function of lymphocytes from mice with endotoxininduced oxidative stress. Free Rad Res 35: 73–84, 2001Google Scholar
  6. 6.
    Meister A, Anderson ME: Glutathione. Ann Rev Biochem 52: 711–760, 1983Google Scholar
  7. 7.
    Vojdani A, Bazargan M, Vojdani E, Wright J: New evidence for antioxidant properties of vitamin C. Cancer Detect Prevent 24: 508–523, 2000Google Scholar
  8. 8.
    Jariwalla RJ, Harakech S: Ascorbic acid. In: J.R. Harris (ed). Biochemistry and Biomedical Cell Biology. Plenum Press, New York, 1996, pp 215–231Google Scholar
  9. 9.
    Staal FJ, Roederer M, Raju PA, Anderson MT, Ela SW, Herzenberg LA: Antioxidants inhibit stimulation of HIV long terminal repeat-directed transcription. AIDS Res Hum Retroviruses 9: 299–306, 1993Google Scholar
  10. 10.
    Peristeris P, Clark BD, Gatti S, Faggioni R, Mantovanim A, Mengozzim M, Orencoleo SF, Sironis M, Ghezzi P: N-acetylcysteine and glutathione as inhibitors of tumor necrosis factor production. Cell Immunol 140: 390–399, 1992Google Scholar
  11. 11.
    Hammarqvist F, Lou JL, Cotgreave IA, Anderson K, Wenerman J: Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 25: 78–84, 1997Google Scholar
  12. 12.
    Treitinger A, Spada C, Verdi JC, Mirando AFB, Oliveira OV, Silveira MVS, Moriel P, Abdalla DSP: Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur J Clin Invest 30: 454–459, 2000Google Scholar
  13. 13.
    Víctor VM, Miñano M, Guayerbas N, Del Río M, Medina S, De la Fuente: Effects of endotoxic shock in several functions of murine peritoneal macrophages. Mol Cell Biochem 189: 25–31, 1998Google Scholar
  14. 14.
    Mansilla-Roselló A, Ferrón Orihuela JD, Ruiz Cabello F, Garrote Lara D, Fernández Mondejar L, Delgado Carrasco ML: Differential effects of IL-1β and ibuprofen after endotoxic challenge in mice. J Surg Res 67: 199–204, 1997Google Scholar
  15. 15.
    Hernanz A: High-performance liquid chromatographic determination of ascorbic acid in serum using paired-ion chromatography and UV spectrophotometric detection. J Clin Invest Clin Biochem 26: 459–461, 1988Google Scholar
  16. 16.
    Meydani SN, Wu D, Santos MS, Hayek MG: Antioxidants and immune response in aged persons: Overview of present evidence. Am Clin Nutr 62: 1462–1476, 1995Google Scholar
  17. 17.
    Ogilvie AC, Groeneveld ABJ, Straub JP, Hijs LG: Plasma lipid peroxides and antioxidants in human septic shock. Int Care Med 17: 40–44, 1991Google Scholar
  18. 18.
    Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR: Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23: 1179–1183, 1996Google Scholar
  19. 19.
    Rose RC, Bode AM: Biology of free radical scavengers: An evaluation of ascorbate. FASEB J 7: 1135–1142, 1993Google Scholar
  20. 20.
    Mortola E, Okuda M, Ohno K, Watari T, Tsujimoto H, Hasegawa A: Inhibition of apoptosis and virus replication in feline immunodeficiency virus-infected cells by N-acetylcysteine and ascorbic acid. J Vet Med Sci 60: 1187–1193, 1998Google Scholar
  21. 21.
    Del Río M, Ruedas G, Medina S, Víctor VM, De la Fuente M: Improvement by several antioxidants of macrophage function in vitro. Life Sci 63: 871–881, 1998Google Scholar
  22. 22.
    De la Fuente M, Víctor VM: Antioxidants as modulators of immune function. Immunol Cell Biol 78: 49–54, 2000Google Scholar
  23. 23.
    Víctor VM, Guayerbas N, Puerto M, Medina S, De la Fuente M: Ascorbic acid modulates in vitro the function of macrophages from mice with endotoxic shock. Immunopharmacol 46: 89–101, 2000Google Scholar
  24. 24.
    Hernanz A, Collazos ME, De la Fuente M: Effect of age, culture media and lymphocyte presence in ascorbate content of peritoneal macrophages from mice and guinea pigs during phagocytosis. Int Arch Allerg Appl Immunol 91: 166–170, 1990Google Scholar
  25. 25.
    Carbonell LF, Nadal JA, Llanos C, Hernández I, Nava E, Díaz J: Depletion of liver glutathione potentiates the oxidative stress and decreases nitric oxide synthesis in a rat endotoxin shock model. Crit Care Med 28: 2002–2006, 2000Google Scholar
  26. 26.
    Droge W, Eck HP, Mihm S: HIV-induced cysteine deficiency and Tcell dysfunction — a rationale for treatment with N-acetylcysteine. Immunol Today 13: 211–214, 1992Google Scholar
  27. 27.
    Víctor VM, Guayerbas N, Puerto M, De la Fuente M: Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Rad Res: 2002 (in press)Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Víctor Manuel Víctor
    • 1
  • Noelia Guayerbas
    • 1
  • Mónica De la Fuente
    • 1
  1. 1.Department of Animal Physiology, Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations