Journal of Materials Science

, Volume 36, Issue 16, pp 3833–3854 | Cite as

Review Grain and subgrain characterisation by electron backscatter diffraction

  • F. J. Humphreys


The application of automated Electron Backscatter Diffraction (EBSD) in the scanning electron microscope, to the quantitative analysis of grain and subgrain structures is discussed and compared with conventional methods of quantitative metallography. It is shown that the technique has reached a state of maturity such that linescans and maps can routinely be obtained and analysed using commercially available equipment and that EBSD in a Field Emission SEM (FEGSEM) allows quantitative analysis of grain/subgrains as small as ∼0.2 μm. EBSD can often give more accurate measurements of grain and subgrain size than conventional imaging methods, often in comparable times. Subgrain/cell measurements may be made more easily than in the TEM although the limited angular resolution of EBSD may be problematic in some cases. Additional information available from EBSD and not from conventional microscopy, gives a new dimension to quantitative metallography. Texture and its correlation with grain or subgrain size, shape and position are readily measured. Boundary misorientations, which are readily obtainable from EBSD, enable the distribution of boundary types to be determined and CSL boundaries can be identified and measured. The spatial distribution of Stored Energy in a sample and the amount of Recrystallization may also be measured by EBSD methods.


Recrystallization Field Emission Imaging Method Conventional Imaging Angular Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    British Standard BS4490:1989, British Standards Institute, London (1989).Google Scholar
  2. 2.
    E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Reading, MA, 1970).Google Scholar
  3. 3.
    B. Hutchinson, L. Ryde and E. Lindh, Math.Sci.Eng. A257 (1998) 9.Google Scholar
  4. 4.
    H. S. Ubhi, P. Holdway, D. Baxter and S. Pitman, DERA, Farnborough (private communication).Google Scholar
  5. 5.
    F. J. Humphreys, in “Quantitative Microscopy of High Temperature Materials,” edited by A. Strang (Institute of Materials, in press).Google Scholar
  6. 6.
    A. J. Wilkinson and P. B. Hirsch, Micron 28 (1997) 279.Google Scholar
  7. 7.
    V. Randle and O. Engler, “An Introduction to Texture Analysis” (Gordon and Breach, Amsterdam, 2000).Google Scholar
  8. 8.
    M. N. Alam, M. Blackman and D. W. Pashley, Proc. Royal Soc.Lond. A221 (1954) 224.Google Scholar
  9. 9.
    D. J. Dingley and V. Randle, J.Mater.Sci. 27 (1992) 4545.Google Scholar
  10. 10.
    V. Randle, “Microtexture Determination” (Institute of Materials, London, 1992).Google Scholar
  11. 11.
    B. L. Adams, Ultramicroscopy 67 (1997) 11.Google Scholar
  12. 12.
    D. P. Field, ibid. 67 (1997) 1.Google Scholar
  13. 13.
    S. I. Wright and B. L. Adams, Metall.Trans 23A (1992) 759.Google Scholar
  14. 14.
    N. C. Krieger Lassen, D. Juul Jensen and K.Conradsen, Scanning Microsc. 6 (1992) 115.Google Scholar
  15. 15.
    B. L. Adams, S. I. Wright and K. Kunze, Met.Mat. Trans. 24A (1993) 819.Google Scholar
  16. 16.
    F. J. Humphreys and I. Brough, J.Microscopy 195 (1999) 6.Google Scholar
  17. 17.
    D. J. Prior, P. W. Trimby, U. D. Weber and D. J. Dingley, Mineral.Mag. 60 (1996) 859.Google Scholar
  18. 18.
    A. P. Day and T. E. Quested, J.Microscopy 195 (1999) 186.Google Scholar
  19. 19.
    J. R. Michael, Microsc.Microanal. 5 (1999) 218.Google Scholar
  20. 20.
    F. J. Humphreys (2000). VMAP is a suite of programmes developed for quantitative analysis of the EBSD data generated by the HKL Channel acquisition system. It can be made available on request.Google Scholar
  21. 21.
    Idem., J.Microscopy 195 (1999) 170.Google Scholar
  22. 22.
    T. Pettersen, G. Heiberg and J. Hjelen, in Proc. ICEM 14, Cancun, Mexico, 3 (1998) 775.Google Scholar
  23. 23.
    F. J. Humphreys, Y. Huang, I. Brough and C. Harris, J.Microscopy 195 (1999) 212.Google Scholar
  24. 24.
    J. L. Goldstein, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori and E. Lifshin, “Scanning Electron Microscopy and X-ray Microanalysis” (Plenum, New York, 1992).Google Scholar
  25. 25.
    N. C. Krieger Lassen, J.Microscopy 181 (1996) 72.Google Scholar
  26. 26.
    A. J. Wilkinson, in Proc. EMAG99. Inst.Phys.Conf.Ser. 161 (1999) 115.Google Scholar
  27. 27.
    D. J. Prior, J.Microscopy 195 (1999) 217.Google Scholar
  28. 28.
    K. Kunze, B. L. Adams, F. Heidelbach and H. R. Wenk, in 10th Int Conf. on Textures (ICOTOM10), edited by H. Bunge (Clausthal, Germany, 1993), 1243.Google Scholar
  29. 29.
    D. J. Prior, A. P. Boyle, F. Brenker, M. Cheadle, A. Day, G. Lopez, G. J. Potts, S. Reddy, R. Spiess, N. E. Timms, P. Trimby, J. Wheeler and L. ZetterstrÖm, American Mineralogist 84 (1999) 1741.Google Scholar
  30. 30.
    R. T. De Hoff and F. N. Rhines, “Quantitative Microscopy” (McGraw Hill, New York, 1968).Google Scholar
  31. 31.
    J. K. Mackenzie, Biometrika 45 (1958) 229.Google Scholar
  32. 32.
    S. I. Wright and U. F. Kocks, in Proc. 11th Int. Conf. on Texture, Xian, edited by Z. Liang (Int Academic Publishers, Beijing), 1 (1996) 53.Google Scholar
  33. 33.
    D. J. Dingley and D. P. Field, Mater.Sci.Technol. 13 (1997) 69.Google Scholar
  34. 34.
    R. L. Fullman, Trans.AIME 197 (1953) 447.Google Scholar
  35. 35.
    Y. Huang and F. J. Humphreys, Acta Mater. 48 (2000) 2017.Google Scholar
  36. 36.
    W. Yang, B. L. Adams and M. De Graef, in Proc. 11th Int Conf. on Textures (ICOTOM11), edited by J. Szpunar, Montreal, (1999) 192.Google Scholar
  37. 37.
    B. L. Adams, in Proc. 11th Int Conf. on Textures (ICOTOM11), Montreal, edited by J. Szpunar, (1999) p. 9.Google Scholar
  38. 38.
    D. Dyson, Proc.Royal Mic.Soc. 35(2) (2000) 147.Google Scholar
  39. 39.
    X. Huang and D. J. Jensen, in Proc. EBSD Seminar, TMS Fall meeting (2000), in press.Google Scholar
  40. 40.
    N. C. Krieger Lassen, D. Juul Jensen and K. Conradsen, Acta Crystall. A50 (1994) 741.Google Scholar
  41. 41.
    M. Humbert, N. Gey, J. Muller and C. Esling, J.App.Cryst. 29 (1996) 662.Google Scholar
  42. 42.
    F. J. Humphreys, P. S. Bate and P. J. Hurley, J.Microsc. (2000), in press.Google Scholar
  43. 43.
    M. Kuwahara and S. Eiho, in “Digital Processing of Biomedical Images” edited by K. Preston and M. Onoe (Plenum Press, New York, 1976) p. 187.Google Scholar
  44. 44.
    P. J. Hurley and F. J. Humphreys, in Proc. 5th Int Conf. on Recrystallization, Aachen, edited by G. Gottstein and D. Molodov (2001), in press.Google Scholar
  45. 45.
    R. A. Schwarzer and H. Weiland, in Proc. 7th Int Conf. on Textures (ICOTOM7), Zwidjendrecht, edited by C. M. Brackman (Netherlands Soc. for Mats. Sci. 1984), p. 839.Google Scholar
  46. 46.
    A. Bardal, I. Lindseth, H. E. Vatne and E. Nes, in Proc. 16th Riso Int. Symp, Denmark, edited by N. Hansen et al. (Riso National Laboratory, 1995), p. 261.Google Scholar
  47. 47.
    N. C. Krieger Lassen, in Proc. 16th Riso Int. Symp, Denmark, edited by Hansen et al. (Riso National Laboratory, 1995), p. 405.Google Scholar
  48. 48.
    R. A. Schwarzer, Ultramicroscopy 67 (1997) 19.Google Scholar
  49. 49.
    Q. Liu, ibid. 60 (1995) 81.Google Scholar
  50. 50.
    F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena” (Pergamon, Oxford, 1995).Google Scholar
  51. 51.
    H. J. Bunge, “Texture Analysis in Materials Science” (Butterworth, London, 1992).Google Scholar
  52. 52.
    R. W. Cahn, in “Processing of Metals and Alloys,” edited by Cahn (VCH, Heinheim, 1991), p. 429.Google Scholar
  53. 53.
    W. B. Hutchinson, E. Lindh and P. S. Bate, in Proc. 12th Int Conf. on Texture, edited by J. Szpunar (NRC Press, Ottawa, 1999), p. 34.Google Scholar
  54. 54.
    A. W. Bowen, Mater.Sci.Tech. 6 (1990) 1058.Google Scholar
  55. 55.
    G. J. Baczynski, R. Guzzo, M. D. Ball and D. J. Lloyd, Acta Mater. 48 (2000) 3361.Google Scholar
  56. 56.
    P. S. Lee, A. D. Rollett and B. L. Adams, in Proc. ICOTOM12, 1999, p. 21.Google Scholar
  57. 57.
    Y. Huang, F. J. Humphreys and M. Ferry, Acta Mater. 48 (2000) 2543.Google Scholar
  58. 58.
    J. Hansen, J. Pospiech and K. Lucke, “Tables for Texture Analysis of Cubic Crystals” Springer-Verlag, Berlin (1978).Google Scholar
  59. 59.
    F. C. Frank, Metall.Trans. 19A (1988) 403.Google Scholar
  60. 60.
    W. B. Hutchinson, L. Ryde, P. S. Bate and B. Bacroix, Scripta Mater 35 (1996) 579.Google Scholar
  61. 61.
    V. Randle, “The Measurement of Grain Boundary Geometry” (Inst. Phys. Publishing, Bristol, 1993).Google Scholar
  62. 62.
    B. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett and S. Taasan, Scripta Mater. 38 (1998) 531.Google Scholar
  63. 63.
    C.-C. Yang, A. D. Rollett and W. W. Mullins, in Proc. 21st Riso Int. Symp., Denmark, edited by N. Hansen et al. (Riso National Laboratory, 2000), p. 659.Google Scholar
  64. 64.
    V. Randle, M. Caul and J. Fiedler, Micros.Microanal. 3 (1997) 224.Google Scholar
  65. 65.
    V. Randle and C. Hoile, in Proc. Int. conf. on Texture and Anisotropy of Polycrystals, edited by R. Schwarzer (Trans Tech Publishing, Switzerland, 1998), p. 183.Google Scholar
  66. 66.
    V. M. Segal, Mater.Sci.Eng. A197 (1995) 157.Google Scholar
  67. 67.
    K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 46 (1998) 1589.Google Scholar
  68. 68.
    C. Harris, P. B. Prangnell and X. Duan, in Proc. 6th Int. Conf on aluminium alloys (ICAA6), edited by T. Sato et al. (Toyohashi, Japan) 1 (1998) 583.Google Scholar
  69. 69.
    F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia and C. Harris, Phil.Trans.Royal Society A357 (1999) 1663.Google Scholar
  70. 70.
    A. Gholinia, P. B. Prangnell and M. V. Markuchev, Acta Mater. 48 (2000) 1115.Google Scholar
  71. 71.
    D. G. Brandon, B. Ralph, S. Ranganathan and M. S. Wald, Acta Metall. 12 (1964) 813.Google Scholar
  72. 72.
    H. Mykura, in “Grain Boundary Structure and Kinetics,” edited by Balluffi (ASM, Ohio, 1980), 445.Google Scholar
  73. 73.
    D. G. Brandon, Acta Metall. 14 (1966) 1479.Google Scholar
  74. 74.
    G. Palumbo and K. T. Aust, in “Materials Interfaces,” edited by Wolf and Yip (Chapman and Hall, London, 1992), p. 190.Google Scholar
  75. 75.
    T. Watanabe, in Proc. 4th Int Conference on Recrystallization, edited by T. Sakai and H. Suzuki, Japanese Institute of Metals, Tsukuba, Japan (1999), p. 99.Google Scholar
  76. 76.
    V. Randle, “The Role of the Coincidence Site Lattice in Grain Boundary Engineering” (Inst. of Materials, London, 1996).Google Scholar
  77. 77.
    E. M. Lehockey and G. Palumbo, Mater.Sci.Eng. A237 168.Google Scholar
  78. 78.
    M. G. Ardakani, N. D'souza, B. Shollock and M. Mclean, Met.Trans A 31A (2000) 2887.Google Scholar
  79. 79.
    Y. Pan and B. L. Adams, Scripta Metall. 30 (1994) 1055.Google Scholar
  80. 80.
    P. L. Orsetti Rossi and C. M. Sellars, Acta Mater. 45 (1997) 137.Google Scholar
  81. 81.
    E. Lindh, B. Hutchinson and P. Bate, in Proc. 10th Int Conf of Textures, 1995. Clausthal-Zellerfeld, Germany, edited by H. J. Bunge (Trans Tech Publications, Switzerland, 1993) p. 1917.Google Scholar
  82. 82.
    O. Engler, in Proc. 19th Riso Int. Symp. Denmark, edited by J. Carstersen et al. (Riso National Laboratory, 1998), p. 253.Google Scholar
  83. 83.
    M. P. Black and R. L. Higginson, Scripta Mater. 41 (1999) 125.Google Scholar
  84. 84.
    S. I. Wright, in Proc. 12th Int. Conf. on Texture, edited by J. Szpunar (NRC Press, Ottawa, 1999), p. 104.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F. J. Humphreys
    • 1
  1. 1.Manchester Materials Science CentreUMIST/University of ManchesterManchesterUK

Personalised recommendations