Journal of Materials Science

, Volume 36, Issue 12, pp 3003–3010 | Cite as

Thermal conductivity of dense and porous yttria-stabilized zirconia

  • K. W. Schlichting
  • N. P. Padture
  • P. G. Klemens
Article

Abstract

The thermal conductivity of dense and porous yttria-stabilized zirconia (YSZ) ceramics has been measured as a function of temperature in the range 25 to 1000 °C. The dense specimens were either single crystal (8 mol% YSZ) or sintered polycrystalline (3 mol% and 8 mol% YSZ). The porous specimens (3 mol% YSZ) were prepared using the “fugitive” polymer method, where different amounts of polymer spheres (of two different average sizes) were included in the starting powders before sintering. This method yielded materials with uniformly distributed porosities with a tight pore-size distributions. A theory has been developed to describe the thermal conductivity of dense YSZ as a function of temperature. This theory considers the reduction in the intrinsic thermal conductivity due scattering of phonons by point defects (oxygen vacancies and solute) and by the “hopping” of oxygen vacancies. It also considers an increase in the effective thermal conductivity at high temperatures due to radiation. This theory captures the essential features of the observed thermal conductivity. The Maxwell theory has been used to analyze the thermal conductivity of the porous materials. An adequate agreement was found between the theory and experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley Interscience, New York, 1976).Google Scholar
  2. 2.
    R. L. Jones, in “Metallurgical and Ceramic Coatings,” edited by K. H. Stern (Chapman & Hall, London, 1996) p. 194.Google Scholar
  3. 3.
    R. J. Bratton and S. K. Lau, in “Advances in Ceramics: Science and Technology of Zirconia,” Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, USA, 1981) p. 226.Google Scholar
  4. 4.
    K. D. Sheffler and D. K. Gupta, J. Eng. Gas Turbines and Power (Trans. ASME) 110 (1988) 605.Google Scholar
  5. 5.
    S. M. Meier, D. K. Gupta and K. D. Sheffler, J. Metals 43 (1991) 50.Google Scholar
  6. 6.
    R. C. Novak, A. P. Matarese, R. P. Huston, A. J. Scharman and T. M. Yonushonis, Mater. Manuf. Processes 7 (1992) 15.Google Scholar
  7. 7.
    H. E. Eaton, J. R. Linsey and R. B. Dinwiddie, in “Thermal Conductivity 22,” edited by T. W. Tong (Technomic, Lancaster, PA, USA, 1994) p. 289.Google Scholar
  8. 8.
    R. Mcphearson, Thin Solid Films 112 (1984) 89.Google Scholar
  9. 9.
    J.-M. Dorvaux, O. Lavigne, R. Mevrel, M. Poulain, Y. Renollet and C. Rio, in Proceedings of the 85th Meeting of the AGARD Structures and Materials Panel, Neuilly-sur-Seine, France, 1998, Vol. R-823, edited NATO and AGARD, p. 13.Google Scholar
  10. 10.
    D. P. H. Hasselman, L. F. Johnson, L. D. Bentsen, R. Syed, H. L. Lee and M. V. Swain, Am. Ceram. Soc. Bull. 66 (1987) 799.Google Scholar
  11. 11.
    G. E. Youngblood, R. W. Rice and R. P. Ingel, J. Amer. Ceram. Soc. 71(4) (1988) 255.Google Scholar
  12. 12.
    S. Raghavan, H. Wang, R. B. Dinwiddie, W. D. Porter and M. J. Mayo, Scripta Mater. 39(8) (1998) 1119.Google Scholar
  13. 13.
    P. G. Klemens, in “Thermal Conductivity 23,” edited by K. E. Wils, R. B. Dinwiddie and R. S. Graves (Technomics Publishing Co., Lancaster, PA, USA, 1996) p. 209.Google Scholar
  14. 14.
    Idem., in “Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials,” edited by E. Ma, B. Fultz, R. Shull, J. E. Morral and P. Nash (TMS, Warrendale, PA, USA, 1997) p. 87.Google Scholar
  15. 15.
    J. Zhao and M. P. Harmer, J. Amer. Ceram. Soc. 70 (1988) 449.Google Scholar
  16. 16.
    E. C. M. Pennings and W. Grellner, ibid. 72 (1989) 1268.Google Scholar
  17. 17.
    R. E. Taylor and K. D. Maglic, in “Compendium of Thermophysical Property Measurement Methods,” Vol. 1, edited by K. D. Maglic, A. Cezairliyan and V. E. Peletsky (Plenum Press, New York, NY, USA) 1984.Google Scholar
  18. 18.
    K. D. Maglic and R. E. Taylor, in “Compendium of Thermophysical Property Measurement Methods,” Vol. 2, edited by K. D. Maglic, A. Cezairliyan and V. E. Peletsky (Plenum Press, New York, NY, USA) 1992.Google Scholar
  19. 19.
    P. G. Klemens, in “Thermal Conductivity,” Vol. 1, edited by R. P. Tyne (Academic Press, London, UK, 1969) p. 1.Google Scholar
  20. 20.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, “Thermophysical Properties of Matter: Vol. 2, Thermal Conductivity” (Plenum, New York, NY, USA, 1970).Google Scholar
  21. 21.
    P. G. Klemens, Phys. Rev. 119 (1960) 507.Google Scholar
  22. 22.
    Idem., Physica B 263-264 (1999) 102.Google Scholar
  23. 23.
    W. M. Rogers and R. L. Powell, NBS Circular 595 (1958) 1.Google Scholar
  24. 24.
    D. L. Wood and K. Nassau, Applied Optics 21 (1982) 2978.Google Scholar
  25. 25.
    J. E. Parrott and A. D. Stuckes, “Thermal Conductivity of Solids” (Pion Ltd., London, UK, 1975).Google Scholar
  26. 26.
    J. C. Maxwell, “A Treatise on Electricity and Magnetism” (Clarendon Press, Oxford, UK, 1904).Google Scholar
  27. 27.
    P. G. Klemens, High Temps.-High Press. 23 (1991) 241.Google Scholar
  28. 28.
    K. W. Schlichting, N. P. Padture and P. G. Klemens, in “Thermal Conductivity 25,” edited by C. Uher and D. Morelli (Technomic, Lancaster, PA, USA, 2000) p. 162.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • K. W. Schlichting
    • 1
  • N. P. Padture
    • 1
  • P. G. Klemens
    • 2
  1. 1.Department of Metallurgy and Materials Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Physics, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations