Journal of Materials Science

, Volume 36, Issue 13, pp 3129–3135 | Cite as

Deformation mechanisms in cellulose fibres, paper and wood

  • S. J. Eichhorn
  • J. Sirichaisit
  • R. J. Young


The use of Raman spectroscopy in probing the deformation mechanisms of cellulose fibres (regenerated and natural), and two natural cellulose composite systems (wood and paper) is described. It is shown that during tensile deformation the 1095 cm−1 Raman band, corresponding to the stretching of the cellulose ring structure, shifts towards a lower wavenumber due to molecular deformation. By analysing a number of fibres with different microstructures this shift is shown to be invaluable in understanding the micromechanisms of deformation in these materials. Moreover, the rate of Raman band shift is shown to be invariant with stress for all fibre types, consistent with a fibre microstructure based on a modified series aggregate model. In the composite systems, such as wood and paper, it is shown that the stress-induced Raman band shift in the cellulose gives an important insight into their local deformation micromechanics.


Polymer Microstructure Cellulose Raman Spectroscopy Deformation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.-Y. Yeh and R. J. Young, Polymer 40 (1999) 85.Google Scholar
  2. 2.
    C. Woodcock and A. Sarko, Macromolecules 13 (1980) 1183.Google Scholar
  3. 3.
    A. Sarko and R. Muggli, ibid. 7 (1974) 480.Google Scholar
  4. 4.
    S. J. Eichhorn, M. L. Hughes, R. Snell and L. Mott, J. Mater. Sci. Lett. 19 (2000) 721.Google Scholar
  5. 5.
    S. J. Eichhorn, R. J. Young and W.-Y. Yeh, Textile Research Journal 71(2) (2001) 121.Google Scholar
  6. 6.
    A. J. Panshin and De C. Zeeuw, in “Textbook of Wood Technology” (McGraw-Hill, New York, 1970).Google Scholar
  7. 7.
    L. Mott, S. M. Shaler and L. H. Groom, Wood and Fiber Science 28 (1996) 429.Google Scholar
  8. 8.
    P. Navi, P. K. Rastogi, V. Gresse and A. Tolou, Wood Science and Technology 29 (1995) 411.Google Scholar
  9. 9.
    H. L Cox, Brit. J. Appl. Phys. 3 (1952) 72.Google Scholar
  10. 10.
    D. H. Page, Tappi J. 52(4) (1969) 674.Google Scholar
  11. 11.
    O. Kallmes, G. Bernier and M. A. Perez, Paper Tech. and Ind. 18 (1977) 222, 243, 283, 328.Google Scholar
  12. 12.
    K. M. Entwistle and N. J. Terrill, J. Mater. Sci. 35 (2000) 1675.Google Scholar
  13. 13.
    D. W. Marquardt, J. Soc. Ind. Appl. Math. 11 (1963) 431.Google Scholar
  14. 14.
    R. H. Atalla and S. C. Nagel, Science 185 (1974) 522.PubMedGoogle Scholar
  15. 15.
    R. H. Atalla, Appl. Polym. Symp. 28 (1976) 659.Google Scholar
  16. 16.
    R. J. Young, J. Text. Inst. 86 (1995) 360.Google Scholar
  17. 17.
    R. H. Atalla and U. P. Agarwal, Science 227 (1985) 636.Google Scholar
  18. 18.
    J. Sirichaisit. Ph.D. Thesis, UMIST, UK, 2000.Google Scholar
  19. 19.
    W. G. Glasser, in “Pulp and Paper Chemistry and Chemical Technology” (Wiley InterScience, New York, 1980) p. 39.Google Scholar
  20. 20.
    D. Hull and T.W. Clyne, “An Introduction to Composite Materials,” 2nd ed., (Cambridge University Press, 1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. J. Eichhorn
    • 1
  • J. Sirichaisit
    • 1
  • R. J. Young
    • 1
  1. 1.Materials Science CentreUMIST/University of ManchesterManchesterUK

Personalised recommendations