Journal of Autism and Developmental Disorders

, Volume 32, Issue 1, pp 35–41 | Cite as

Molecular and Cytogenetic Analyses on Brazilian Youths with Pervasive Developmental Disorders

  • Marcos Roberto Higino Estécio
  • Agnes Cristina Fett-Conte
  • Marileila Varella-Garcia
  • Cíntia Fridman
  • Ana Elizabete Silva
Article

Abstract

The Pervasive Developmental Disorders (PDDs) constitute a group of behavioral and neurobiological impairment conditions whose main features are delayed communicative and cognitive development. Genetic factors are reportedly associated with PDDs and particular genetic abnormalities are frequently found in specific diagnostic subgroups such as the autism spectrum disorders. This study evaluated cytogenetic and molecular parameters in 30 youths with autism or other PDDs. The fragile X syndrome was the most common genetic abnormality detected, presented by 1 patient with autism and 1 patient with PPD not-otherwise specified (PPD-NOS). One girl with PDD-NOS was found to have tetrasomy for the 15q11-q13 region, and one patient with autism exhibited in 2/100 metaphases an inv(7)(p15q36), thus suggesting a mosaicism 46,XX/46,XX,inv(7)(p15q36) or representing a coincidental finding. The high frequency of chromosomopathies support the hypothesis that PDDs may develop as a consequence to chromosomal abnormalities and justify the cytogenetic and molecular assessment in all patients with PDDs for establishment of diagnosis.

Cytogenetic analysis PDD PDD-NOS fragile X genetic factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abitbol M., Menini C., Delezoide A. L., Rhynes T., Vekemans M., & Mallet J. (1993). Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nature Genetics, 4, 147–152.Google Scholar
  2. Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., Flach, K., Nagamoto, H., Bickford, P., Leonard, S., & Freedman, R. (1998). Schizophrenia, sensory gating and nicotinic receptor. Schizophenia Bulletin, 24, 189–202.Google Scholar
  3. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  4. CantÚ, E. S., Stone, J. W., Wing, A. A., Langee, H. R., & Williams, C. A. (1990). Cytogenetic survey for autistic fragile X carriers in a mental retardation center. American Journal of Mental Retardation, 94, 442–447.Google Scholar
  5. Chini, B., Raimond, E., Elgoyhen, A. B., Moralli, D., Balzaretti, M., & Heinemann, S. (1994). Molecular cloning and chromosomal localization of the human alpha-7-nicotinic receptor subunit gene (CHRNA7). Genomics, 19, 379–381.Google Scholar
  6. Clagett-Dame, M., & Plum, L. A. (1997). Retinoid-regulated gene expression in neural development. Critical Reviewns in Eukaryotic Gene Expression, 7, 299–342.Google Scholar
  7. Doucette-Stamm, L., Monteggia, L. M., Donnelly-Roberts, D., Wang, M. T., Lee, J., Tian, J., & Giordano, T. (1993). Cloning and sequence of the human alpha-7 nicotinic acetylcholine receptor. Drug Developmental Research, 30, 252–256.Google Scholar
  8. Emslie, F., Williamson, M. P., Rees, M., Kerr, M., Kjedesen, M. J., Pang, K. A., Sundqvist, A., Friis, M. L., Chadwick, D., Richens, A., Curtis, D., Whitehouse, W. P., & Gardiner, R. M. (1997). Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Medizinische Genetik, 9, 15.Google Scholar
  9. Fisch, G. S. (1992). Is autism associated with the fragile X syndrome? American Journal of Medical Genetics, 43, 47–55.Google Scholar
  10. Folstein, S. E., & Piven, J. (1991). Etiology of autism: Genetic influences. Pediatrics, 87, 767–771.Google Scholar
  11. Freedman, M. C., Coon, H., Myles-Worsley, M., Orr-Urtreger, A., Olincy, A., Davis, A, Polymeropoulos, M., Holik, J., Hopkins, J., Hoff, M., Rosenthal, J., Waldo, M. C., Reimherr, F., Wender, P., Yaw, J., Young, D. A., Breese, C. R., Adams, C., Patterson, D., Adler, L. E., Kruglyak, L., Leonard, S., & Byerley, W. (1997). Linkage of neurophisiological deficit in schizophrenia to a chromosome 15 locus. Proccedings of the National Academy of Science, 94, 587–592.Google Scholar
  12. Gillberg, C., & Wing, L. (1999). Autism: not an extremely rare disorder. Acta Psychiatrica Scandinavica, 99, 399–406.Google Scholar
  13. Gillberg, C., Steffenburg, S., Wahlstrom, J., Gillberg, I. C., Sjostedt, A., Martinsson, T., Liedgren, S., & Eeg-Olofsson, O. (1991). Autism associated with marker chromosome. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 489–494.Google Scholar
  14. Glatt, K. A., Sinnet, D., & Lalande, M. (1992). Dinucleotide repeat polymorphism at the GABAA receptor alpha-5 (GABRA5) locus at chromosome 15q11-q13. Human Molecular Genetics, 1, 348.Google Scholar
  15. Glenn, C. C., Saitoh, S., Jong, M. T. C., Filbrandt, M. M., Surti, U., Driscoll, D. J., & Nicholls, R. D. (1996). Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. American Journal of Human Genetics, 58, 335–346.Google Scholar
  16. Greger, V., Knoll, J. H. M., Woolf, E., Glatt, K., Tyndale, R. F., Delorey, T. M., Olsen, R. W., Tobin, A. J., Sikela, J. M., Nakatsu, Y., Brilliant, M. H., Whiting, O. S., & Lalande, M. (1995). The gamma-aminobutinic acid receptor gamma-3 subunit gene (GABRG3) is tightly linked to the alpha-5 subunit gene (GABRA5) on the chromosome 15q11-q13 and is transcribed in the same orientation. Genomics, 26, 258–264.Google Scholar
  17. Haddad, L. A., Mingroni-Netto, R. C., Vianna-Morgante, A. M., & Pena, S. D. J. (1996). A PCR-based test suitable for screening for fragile X syndrome among retarded males. Human Genetics, 97, 808–812.Google Scholar
  18. Hagerman, R. J., & Silverman, A. C. (1996). Fragile X syndrome: Diagnosis, treatment and research. Baltimore: Johns Hopkins University Press.Google Scholar
  19. Hanks, M., Wurst, W., Anson-Catwright, L., Auerbach, A. B., & Joyner, A. L. (1995). Rescue of the En-1 mutant phehotype replacement of En-1 with En-2. Science, 269, 679–682.Google Scholar
  20. Hinds, H. L., Ashley, C. T., Sutcliffe, J. S., Nelson, D. L., Warren, S. T., Housman, D. E., & Schalling, M. (1993). Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nature Genetics, 3, 36–43.Google Scholar
  21. International Molecular Genetic Study of Autism Consortium. (1998). Human Molecular Genetics, 7, 571–578.Google Scholar
  22. Jorde, L. B., Hasstedt, S. J., Ritvo, E. R., Mason-Brothers, A., Freeman, B. J., Pingree, C., McMahon, W. M., Petersen, B., Jenson, W. R., & Mo, A. (1991). Complex segregation analysis of autism. American Journal of Human Genetics, 49, 932–938.Google Scholar
  23. Kojis, T. L., Gatti, R. A., & Sparkes, R. S. (1991). The cytogenetics of ataxia telangiectasia. Cancer Genetics and Cytogenetics, 56, 143–153.Google Scholar
  24. Konstantareas, M. M., & Homatidis, S. (1999). Chromosomal abnormalities in a series of children with autistic disorder. Journal of Autism and Developmantal Disorders, 29, 275–285.Google Scholar
  25. Li, S. Y., Chen, Y. C. J., Lai, T. J., Hsu, C. Y., & Wang, Y. C. (1993). Molecular and cytogenetic analysis of autism in Taiwan. Human Genetics, 92, 441–445.Google Scholar
  26. Lombroso, P. J., Pauls, D. L., & Leckman, J. F. (1994). Genetic mechanisms in childhood psychiatric disorders. Journal of the American Academy Child and Adolescent Psychiatry, 33, 921–928.Google Scholar
  27. Lopreiatjo, J. O., & Wulfsberg, E. A. (1992). A complex chromosome rearrangement in a boy with autism. Journal of Developmental and Behavioral Pediatric, 13, 281–283.Google Scholar
  28. Mariner, R., Jackson, A. W., Levitas, A., Hagerman, R. J., Braden, M., McBogg, P. M., Smith, A. C. M., & Berry, R. (1986). Autism, mental retardation and chromosomal abnormalities. Journal of Autism and Developmental Disorders, 16, 425–440.Google Scholar
  29. Matsuura, T., Sutcliffe, J. S., Fang, P., Galjaard, R. J., Jiang, Y., Benton, C. S., Rommens, J. M., & Beaudet, A. L. (1997). De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genetics, 15, 74–77.Google Scholar
  30. Min, W., Woo, H. J., Lee, C. S., Lee, K. K., Yoon, W. K., Park, H. W., & Kim, M. H. (1998). 307-bp fragment in HOXA7 upstream upstream sequence is sufficient for anterior boundary formation. DNA and Cell Biology, 17, 293–299.Google Scholar
  31. Nicholls, R. D., Knoll, J. H. M., Glatt, K., Hersh, J. H., Brewster, T. D., Graham, Jr. J. M., Wurster-Hill, D., Wharton, R., & Latt, S. A. (1989). Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi syndrome. American Journal of Medical Genetics, 33, 66–77.Google Scholar
  32. Pena, S. D. J., Macedo, A. M., Gontijo, N. F., Medeiros, A. M., & Ribeiro, J. C. C. (1991). DNA bioprints: Simple non-isotopic DNA fingerprints with biotinylated probes. Electrophoresis, 12, 146–152.Google Scholar
  33. Petit, E., Hérault, J., Martineau, J., Perrot, A., Barthélémy, C., Hameury, L., Sauvage, D., Lelord, G., & Müh, J. P. (1995). Association study with two markers of a humam homeogene in infantile autism. Journal of Medical Genetics, 32, 269–274.Google Scholar
  34. Philippe A., Martinez, M., Guilloud-Bataille, C., Rastam, M., Sponheim, E., Coleman, M., Zapella, M., Aschauer, H., van Malldergerme, L., Penet, C., Feingold, J., Brice, A., & Leboyer, M. (1999). Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Human Molecular Genetics, 8, 505–512.Google Scholar
  35. Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological origin of autism: Developmental anomalies of the cranial nerve motor nuclei. Journal of Comparative Neurology, 370, 247–261.Google Scholar
  36. Schinzel, A. (1990). Autistic disorder and additional inv dup (15) (pterq13) chromosome. American Journal of Medical Genetics, 35, 447.Google Scholar
  37. Schroer, R. J., Phelan, M. C., Michaelis, R. C., Crawford, E. C., Skinner, S. A., Cuccaro, M., Simensen, R. J., Bishop, J., Skinner, C., Fender, D., & Stevenson, R. C. (1998). Autism and maternally derived aberrations of chromosome 15q. American Journal of Medical Genetics, 76, 327–336.Google Scholar
  38. Sherman, S. (1996). Epidemiology. In: Hagerman, R. J. and Silverman, A. C. (Eds.). Fragile X syndrome: Diagnosis, treatment and research. Baltimore: Johns Hopkins University Press, 3–87.Google Scholar
  39. Smalley, S. L. (1997). Genetic influences in childhood onset psychiatric disorders: Autism and attention-deficit/hyperactivity disorder. American Journal of Human Genetics, 60, 1276–1282.Google Scholar
  40. Turner, B., & Jennings, A. N. (1961). Trissomy for chromosome 22. Lancet, I, 49–50.Google Scholar
  41. Wagstaff, J., Knoll, J. H. M., Fleming, J., Kirkness, E. F., Martin-Gallardo, A., Greenberg, F., Graham, J. M. Jr., Menninger, J., Ward, D., Venter, J. C., & Lalande, M. (1991). Localization of the gene encoding the GABA-A receptor b3 subunit to the Algelman/Prader-Willi region of human chromosome 15. American Journal of Human Genetics, 49, 330–337.Google Scholar
  42. Wakabayashi, S. (1979). A case of infantile autism associated with Down syndrome. Journal of Autism and Developmental Disorders, 9, 31–36.Google Scholar
  43. Wiedmer-Mikhail, E., Sheldon S., & Ghaziuddin, M. (1998). Chromosomes in autism and related pervasive developmental disorders: A cytogenetic study. Journal of Intellectual Disability Research, 42, 8–12.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Marcos Roberto Higino Estécio
    • 1
  • Agnes Cristina Fett-Conte
    • 2
  • Marileila Varella-Garcia
    • 3
  • Cíntia Fridman
    • 4
  • Ana Elizabete Silva
    • 1
  1. 1.Laboratório de Citogenética e Biologia Molecular, Instituto de Biociências, Letras e Ciências Exatas-UNESP Campus de SãoJosé do Rio Preto, SPBrazil
  2. 2.Laboratório de GenéticaDepartamento de Biologia Molecular, FAMERPSão José do Rio Preto, SPBrazil
  3. 3.University of Colorado Health Sciences CenterDenverUSA
  4. 4.Instituto de BiociênciasUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations