Journal of Philosophical Logic

, Volume 26, Issue 2, pp 169–180 | Cite as

On the completeness of first degree weakly aggregative modal logics

  • Peter Apostoli
Article

Abstract

This paper extends David Lewis’ result that all first degree modal logics are complete to weakly aggregative modal logic by providing a filtration-theoretic version of the canonical model construction of Apostoli and Brown. The completeness and decidability of all first-degree weakly aggregative modal logics is obtained, with Lewis’s result for Kripkean logics recovered in the case k=1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Apostoli, P. and Brown, B. “A solution to the completeness problem for weakly aggregative modal logic”. To appear in The Journal of Symbolic Logic. Google Scholar
  2. 2.
    Chellas, Brian F. Modal Logic: An Introduction. Cambridge University Press, 1980.Google Scholar
  3. 3.
    Goldblatt, R.I. Logics of Time and Computation. CSLI Lecture Notes No. 7, Center for the Study of Language and Information, Stanford University, 1987.Google Scholar
  4. 4.
    Jennings, R.E. and Schotch, P.K. “The Preservation of Coherence”. Studia Logica 43(1–2) (1984), 89–106.Google Scholar
  5. 5.
    Jennings, R.E. and Schotch, P.K. “Some Remarks on (Weakly) Weak Modal Logics”. Notre Dame Journal of Formal Logic 22 (1981), 309–314.Google Scholar
  6. 6.
    Jennings, R.E., Schotch, P.K. and Johnston, D.K. “The ŋ-adic First Order Undefinability of the Geach Formula”. Notre Dame Journal of Formal Logic 22 (1981), 375–378.Google Scholar
  7. 7.
    Jennings, R.E., Schotch, P.K. and Johnston, D.K. “Universal First Order Definability in Modal Logic”. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 26 (1980), 327–330.Google Scholar
  8. 8.
    Johnston, D.K. A Generalized Relational Semantics For Modal Logic.M.A. Thesis, Dept. of Philosophy, Simon Fraser University, 1978.Google Scholar
  9. 9.
    Lewis, David. “Intensional Logics Without Iterative Axioms”. Journal of Philosophical Logic 3 (1974), 457–466.Google Scholar
  10. 10.
    Schotch P.K. and Jennings, R. “Inference and Necessity”. Journal of Philosophical Logic 9 (1980), 327–340.Google Scholar
  11. 11.
    Schotch P.K. and Jennings, R. “Modal Logic and the Theory of Modal Aggregation”. Philosophia 9 (1980), 265–278.Google Scholar
  12. 12.
    Schotch P.K. and Jennings, R. “On Detonating”. In G. Priest and R. Routley eds. Paraconsistent Logic, Philosophia Verlag, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Peter Apostoli
    • 1
  1. 1.Department of PhilosophyUniversity of TorontoTorontoCanada

Personalised recommendations