Potential Analysis

, Volume 7, Issue 1, pp 415–436 | Cite as

The Spectral Function and Principal Eigenvalues for Schrödinger Operators

  • Wolfgang Arendt
  • Charles J. K. Batty
Article

Abstract

Let m ∈ \(L_{loc}^1 (\mathbb{R}^N ) \), 0 ≠ m+ in Kato's class. We investigate the spectral function λ ↦ s(Δ + λm) where s(Δ + λm) denotes the upper bound of the spectrum of the Schrödinger operator Δ + λm. In particular, we determine its derivative at 0. If m- is sufficiently large, we show that there exists a unique λ1 > 0 such that s(Δ + λ1m) = 0. Under suitable conditions on m+ it follows that 0 is an eigenvalue of Δ + λ1m with positive eigenfunction.

Principal eigenvalue Schrödinger semigroup exponential stability spectral bound Brownian motion. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations. Math. Notes 29, Princeton University Press, Princeton N.J., 1992.Google Scholar
  2. 2.
    Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in ℝn. Proc. Amer. Math. Soc. 116(1992), 701-706.Google Scholar
  3. 3.
    Arendt, W.: Gaussian estimates and interpolation of the spectrum in Lp. Differential and Integral Equations 7(1994), 1153-1168.Google Scholar
  4. 4.
    Arendt, W. and Batty, C. J. K.: Domination and ergodicity for positive semigroups. Proc. Amer. Math. Soc. 114(1992), 743-747.Google Scholar
  5. 5.
    Arendt, W. and Batty, C. J. K.: Exponential stability of a diffusion equation with absorption. Differential and Integral Equations 6(1993), 1009-1024.Google Scholar
  6. 6.
    Arendt, W. and Batty, C. J. K.: Absorption semigroups and Dirichlet boundary conditions. Math. Ann. 295(1993), 427-448.Google Scholar
  7. 7.
    Arendt, W. and Batty, C. J. K.: The spectral bound of Schr¨odinger operators. Potential Analysis 5(1996), 207-230.Google Scholar
  8. 8.
    Arendt, W. and Batty, C. J. K.: Principal eigenvalues and perturbation. To appear in: Analysis Symposium.Leiden 1993. P. Huijsmans, M.A. Kaashoek, W. Luxemburg, and B. de Pagter (eds.) Birkhäuser.Google Scholar
  9. 9.
    Batty, C. J. K.: Asymptotic stability of Schrödinger semigroups: path integral methods. Math. Ann. 292(1992), 457-492.Google Scholar
  10. 10.
    Brown, K. J., Cosner, C., and Fleckinger, J.: Principal eigenvalues for problems with indefinite weight functions on ℝN. Proc. Amer. Math. Soc. 109(1990), 147-155.Google Scholar
  11. 11.
    Brown, K. J., Daners, D., and López-Gómez, J.: Change of stability for Schrödinger semigroups. Preprint.Google Scholar
  12. 12.
    Brown, K. J., Lin, S. S., and Tertikas, A.: Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics. J. Math. Biol. 27(1989), 91-104.Google Scholar
  13. 13.
    Brown, K. J. and Tertikas, A.: The existence of principal eigenvalues for problems with indefinite weight function on ℝk. Proc. Royal Soc. Edinburgh 123A(1993), 561-569.Google Scholar
  14. 14.
    Daners, D. and Koch Medina, P.: Superconvexity of the evolution operator and parabolic eigenvalue problems on ℝk. Differential and Integral Equations, to appear.Google Scholar
  15. 15.
    Daners, D. and Koch Medina, P.: Exponential stability, change of stability and eigenvalue problems for linear time periodic parabolic equations on ℝN. Differential and Integral Equations, to appear.Google Scholar
  16. 16.
    Daners, D.: Principal eigenvalues for some periodic-parabolic operators on ℝN and related topics. Preprint. University of Sydney, 1993.Google Scholar
  17. 17.
    Davies, E. B.: Spectral Theory and Differential Operators. Cambridge University Press, 1995.Google Scholar
  18. 18.
    Dautray, R. and Lions, J. L.: Analyse Mathématique et Calcul Numérique.Masson, 1987.Google Scholar
  19. 19.
    Fefferman, C. L.: The uncertainty principle. Bull. Amer. Math. Soc. 9(1983), 129-206.Google Scholar
  20. 20.
    Fleming, W. H.: A selection-migration model in population genetics. J. Math. Biol. 2(1975), 219-233.Google Scholar
  21. 21.
    Hess, P. and Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Partial Diff. Equ. 5(1980), 999-1030.Google Scholar
  22. 22.
    Hempel, R. and Voigt, J.: The spectrum of a Schrödinger operator in L p(ℝN ) is p-independent. Comm. Math. Phys. 104(1986), 243-250.Google Scholar
  23. 23.
    Hempel, R. and Voigt, J.: The spectrum of Schrödinger operators in L p(ℝd ) and in C0(ℝd ). In Mathematical Results in Quantum Mechanics, M. Demuth, P. Exner, H. Neidhardt, and V. Zagrebnov, eds., Birkhäuser, Basel, 1994.Google Scholar
  24. 24.
    Kato, T.: Perturbation Theory. Springer, 1980.Google Scholar
  25. 25.
    Nagel, R. (ed.): One-Parameter Semigroups of Positive Operators. Springer LNM 1184, 1986.Google Scholar
  26. 26.
    Nussbaum, R. D. and Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. Journal d'Analyse Mathématique 59(1992), 161-177.Google Scholar
  27. 27.
    Ouhabaz, E., Stollmann, P., Sturm, T., and Voigt, J.: The Feller property for absorption semigroups. Preprint.Google Scholar
  28. 28.
    Pinchover, Y.: Criticality and ground states for second-order elliptic equations. J. Diff. Equ. 80(1989), 237-250.Google Scholar
  29. 29.
    Pinchover, Y.: On criticality and groung states of second order elliptic equations II. J. Diff. Equ. 87(1990), 353-364.Google Scholar
  30. 30.
    Reed, R. and Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis, revised and enlargeed., Academic Press, New York, 1980.Google Scholar
  31. 31.
    Reed, M. and Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York, 1978.Google Scholar
  32. 32.
    Schaefer, H. H.: Banach Lattices and Positice Operators. Springer, Berlin, 1974.Google Scholar
  33. 33.
    Schechter, M.: The spectrum of the Schrödinger operator. Trans. Amer. Math. Soc. 312(1989), 115-128.Google Scholar
  34. 34.
    Simon, B.: Functional Integration and Quantum Physics. Academic Press, New York, 1979.Google Scholar
  35. 35.
    Simon, B.: Brownian motion, L p-properties of Schrödinger operators and the localization of binding. J. Functional Anal. 35(1980), 215-229.Google Scholar
  36. 36.
    Simon, B.: Large time behaviour of the L p-norm of Schrödinger semigroups. J. Functional Anal. 40(1981), 66–83.Google Scholar
  37. 37.
    Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. 7(1982), 447-526.Google Scholar
  38. 38.
    Stollmann, P. and Voigt, J.: A regular potential which is nowhere in L1. Lett. Math. Phys. 9(1985), 227-230.Google Scholar
  39. 39.
    Voigt, J.: On the perturbation theory for strongly continuous semigroups. Math. Ann. 229(1977), 163-171.Google Scholar
  40. 40.
    Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Functional Anal. 67(1986), 167-205.Google Scholar
  41. 41.
    Voigt, J.: Absorption semigroups. J. Operator Theory 20(1988), 117-131.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Wolfgang Arendt
  • Charles J. K. Batty

There are no affiliations available

Personalised recommendations