Journal of Materials Science

, Volume 36, Issue 15, pp 3737–3744

Hydrothermal degradation mechanism of tetragonal Zirconia

Abstract

The hydrothermal degradation mechanism of tetragonal ZrO2previously proposed by the author was elaborated. In this mechanism, the annihilation of oxygen vacancies is a crucial step, and the grain boundaries play an important role in propagating the degradation. The degradation process of a 3 mol% Y2O3doped ZrO2pellet annealed in water vapor was monitored via impedance spectroscopy, the bulk and the grain boundary resistivity, and the grain boundary thickness were all found to increase with increasing annealing time, proving the annihilation of oxygen vacancies in the bulk and especially at the grain boundaries. The fracture surfaces of the annealed pellet were studied by SEM, only intergranular cracks were observed, indicating the propagation of the degradation along the grain boundaries. The mechanism predicts that the electrode resistance should increase when the electrodes are exposed to water vapor. Silver electrodes on a 8 mol% Y2O3doped ZrO2pellet were annealed in the mixture of oxygen and water vapor, the electrode resistance was found to increase with increasing annealing time. The prediction was thus proven.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics 3/4(1981) 489.Google Scholar
  2. 2.
    T. Sato and M. Shimada, J.Amer.Ceram.Soc. 67(1984) C-212.Google Scholar
  3. 3.
    K. Tsukama and M. Shimada, J.Mater.Sci.Lett. 4(1985) 857.Google Scholar
  4. 4.
    T. Sato and M. Shimada, J.Amer.Ceram.Soc. 68(1985) 356.Google Scholar
  5. 5.
    Y. Murase and E. Kato, ibid. 66(1983) 196.Google Scholar
  6. 6.
    Y. Murase and E. Kato., Ber.Dtsch.Keram.Ges. 57(1980) 86.Google Scholar
  7. 7.
    T. Sato, S. Ohtaki, T. Endo and M. Schimada, J.Amer.Ceram.Soc. 68(1985) C-320.Google Scholar
  8. 8.
    J.-F. Li, R. Watanabe, B.-P. Zhang, K. Asami and K. H. Hashimoto, J.Am.Ceram.Soc. 79(1996) 3109.Google Scholar
  9. 9.
    T. T. LepistÖ, P. V. Lintula and T. A. MÄntylÄ, Ceram.Eng.Sci.Proc. 9(1988) 1517.Google Scholar
  10. 10.
    F. F. Lange, G. L. Dunlop and B. I. Davis, J.Amer. Ceram.Soc. 69(1986) 237.Google Scholar
  11. 11.
    T. Sato, S. Ohtashi and M. Shimada, J.Mater.Sci. 20(1985) 1466.Google Scholar
  12. 12.
    J.-F. Li and R. Watanabe, Mater.Transactions JIM 37(1996) 1171.Google Scholar
  13. 13.
    M. Yoshimura, T. Noma, K. Kawabata and S. Somiya, J.Mater.Sci.Lett. 6(1987) 465.Google Scholar
  14. 14.
    M. Yoshimura, Am.Ceram.Soc.Bull. 67(1988) 1950.Google Scholar
  15. 15.
    M. T. Hernandez, J. R. Jurado and P. Duran, J.Amer.Ceram.Soc. 74(1991) 1254.Google Scholar
  16. 16.
    T. Sato and M. Shimada, Am.Ceram.Soc.Bull. 64(1985) 1382.Google Scholar
  17. 17.
    T. Sato, T. Endo, M. Shimada, T. Mitsudome and N. Otabe, J.Mater.Sci. 26(1991) 1346.Google Scholar
  18. 18.
    M. Hirano, Br.Ceram.Trans.J. 91(1992) 139.Google Scholar
  19. 19.
    M. Yoshimura, T. Hiuga and S. Somiya, J.Amer.Ceram. Soc. 69(1986) 583.Google Scholar
  20. 20.
    X. Guo, Solid State Ionics 112(1998) 113.Google Scholar
  21. 21.
    X. Guo., J.Phys.Chem.Solids 60(1999) 539.Google Scholar
  22. 22.
    X. Guo., Phys.Stat.Sol.(a) 117(2000) 191.Google Scholar
  23. 23.
    X. Guo., Adv.Eng.Mater. 2(2000) 604.Google Scholar
  24. 24.
    J. Livage, K. Doi and C. Mazieres, J.Amer.Ceram.Soc. 51(1968) 349.Google Scholar
  25. 25.
    P. Kountouros and G. Petzow, in “Science and Technology of Zirconia V,” edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, Basel, 1993), p. 30.Google Scholar
  26. 26.
    K. D. Kreuer, Solid State Ionics 125(1999) 285.Google Scholar
  27. 27.
    X. Guo, Comput.Mater.Sci. 20(2001) 168.Google Scholar
  28. 28.
    J. Maier, Ber.Bunsenges.Phys.Chem. 90(1986) 26.Google Scholar
  29. 29.
    T. van Dijk and A. J. Burggraaf, Phys.Stat.Sol.(a) 63(1981) 229.Google Scholar
  30. 30.
    X. Guo and J. Maier, J.Electrochem.Soc. 148(2001) E121.Google Scholar
  31. 31.
    X. Guo, Phys.Stat.Sol.(a) 183(2001) 261.Google Scholar
  32. 32.
    X. Guo and R.-Z. Yuan, J.Mater.Sci. 30(1995) 923.Google Scholar
  33. 33.
    X. Guo., Solid State Ionics 80(1995) 159.Google Scholar
  34. 34.
    X. Guo, Solid State Ionics. 81(1995) 235.Google Scholar
  35. 35.
    X. Guo., J.Eur.Ceram.Soc. 16(1996) 575.Google Scholar
  36. 36.
    X. Guo., Solid State Ionics 96(1997) 247.Google Scholar
  37. 37.
    X. Guo., Solid State Ionics, 99(1997) 137.Google Scholar
  38. 38.
    S. P. S. Badwal and J. Drennan, J.Mater.Sci. 22(1987) 3231.Google Scholar
  39. 39.
    M. Kleitz, Solid State Ionics 3/4(1981) 513.Google Scholar
  40. 40.
    A. Mitterdorfer and L. J. Gauckler, ibid. 117(1999) 187.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Xin Guo
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, Hubei Province 430070, People's Republic of China; Department of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan, Hubei ProvincePeople's Republic of China

Personalised recommendations