Journal of Materials Science: Materials in Medicine

, Volume 12, Issue 9, pp 779–783 | Cite as

Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness

  • Gagik P. Parsamian
  • Timothy L. Norman


This study was concerned with the mechanics and micromechanisms of diffuse (ultrastructural) damage occurrence in human tibial cortical bone specimens subjected to tension–tension fatigue. A nondestructive technique was developed for damage assessment on the surfaces of intact compact tension specimens using laser scanning confocal microscopy. Results indicated that diffuse damage initiates as a result of fractures in the inter-canalicular regions. Subsequent growth of those microscopic flaws demonstrated multiple deflections from their paths due to 3D spatial distribution of microscopic porosities (lacunae–canalicular porosities) and the stress-concentrating effects of lacunae. Damage dominating effects in the early stages of fatigue had been verified by the observed variations of the fracture toughness due to artificially induced amounts of damage. Toughening behavior was observed as a function of diffuse damage. © 2001 Kluwer Academic Publishers


Fatigue Fracture Toughness Process Zone Scanning Confocal Microscopy Compact Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Lakes, Nature 361 (1993) 511.Google Scholar
  2. 2.
    S. C. Cowin, J. Biomech. 32 (1999) 217.Google Scholar
  3. 3.
    L. E. Lanyon, Calcif. Tissue Intl. 53(Suppl. 1) (1993) S102.Google Scholar
  4. 4.
    T. M. Wright and W. C. Hayes, J. Biomech. 10 (1977) 419.Google Scholar
  5. 5.
    W. Bonfield and P. K. Datta, ibid.9 (1976) 131.Google Scholar
  6. 6.
    J. C. Behiri and W. Bonfield, ibid.17 (1984) 25.Google Scholar
  7. 7.
    W. Bonfield, ibid.20 (1987) 1071.Google Scholar
  8. 8.
    D. Vashishth, J. C. Behiri and W. Bonfield, ibid.30 (1997) 763.Google Scholar
  9. 9.
    T. L. Norman, D. Vashishth and D. B. Burr, ibid.28 (1995) 309.Google Scholar
  10. 10.
    T. L. Norman, S. V. Navargikar and D. B. Burr, ibid.29 (1996) 1023.Google Scholar
  11. 11.
    Y. N. Yeni, C. U. Brown and T. L. Norman, Bone 22 (1998) 71.Google Scholar
  12. 12.
    T. L. Norman, Y. N. Yeni, C. U. Brown and Z. Wang, ibid.23 (1998) 303.Google Scholar
  13. 13.
    P. Zioupos and J. D. Currey, ibid.22 (1998) 57.Google Scholar
  14. 14.
    D. B. Burr, C. H. Turner, P. Naick, M. R. Forwood, W. Ambrosius, M. S. Hassan and R. Pidaparti, J. Biomech. 31 (1998) 337.Google Scholar
  15. 15.
    M. B. Schaffler, T. M. Boyce and D. P. Fyhrie, Transactions of the 42nd Annual Meeting, Orthopedic Research Society 21 (1996) 57.Google Scholar
  16. 16.
    M. B. Schaffler, W. C. Pitchford, K. Choi and J. M. Riddle, Bone 15 (1994) 483.Google Scholar
  17. 17.
    P. Zioupos and J. D. Currey, J. Mater. Sci. 29 (1994) 978.Google Scholar
  18. 18.
    T. M. Boyce, D. P. Fyhrie, M. C. Glotkowski, E. L. Radin and M. B. Schaffler, J. Orth. Res. 16 (1998) 322.Google Scholar
  19. 19.
    P. Zioupos, X. T. Wang and J. D. Currey, Clin. Orthop. 11 (1996) 365.Google Scholar
  20. 20.
    ASTM Standards E399-83 Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials. American Society for Testing and Materials, Philadelphia, PA, 1985: 03.01.Google Scholar
  21. 21.
    R. B. Martin and J. Ishida, J. Biomech. 22 (1989) 419.Google Scholar
  22. 22.
    R. W. Barth, C. B. Ruff and K. Bissessur, Clin. Ortho. Rel. Res. 283 (1992) 178.Google Scholar
  23. 23.
    G. I. Barenblatt and L. R. Botvina, Bull. Acad. Sci. USSR, 4 (1983) 88.Google Scholar
  24. 24.
    D. C. Drucker, Appl. Mech. Rev. 41 (1988) 151.Google Scholar
  25. 25.
    Z. P. Bazant, ibid.39 (1986) 675.Google Scholar
  26. 26.
    P. F. Becher, J. Amer. Ceram. Soc. 74 (1991) 255.Google Scholar
  27. 27.
    B. Budiansky, J. W. Hutchinson and J. C. Lambropoulus, Int. J. Solids Structs. 19 (1983) 337.Google Scholar
  28. 28.
    K. T. Faber and A. G. Evans, Acta. Metall. 31 (1983) 565.Google Scholar
  29. 29.
    K. T. Faber and A. G. Evans, ibid.31 (1983) 577.Google Scholar
  30. 30.
    Y-W. Mai, Mater. Forum. 11 (1988) 289.Google Scholar
  31. 31.
    T. L. Norman, G. P. Parsamian and C. B. Coleman, Transactions of the 47th Annual Meeting, Orthopaedic Research Society 26 (2001) 15.Google Scholar
  32. 32.
    R. B. Martin and D. B. Burr, in “The Structure, Function and Adaptation of Cortical Bone” (Raven Press, New York, 1989).Google Scholar
  33. 33.
    H. M. Frost, in “Bone remodeling and its relationship to metabolic bone diseases” (Charles C. Thomas, Springfield, IL, 1973).Google Scholar
  34. 34.
    D. R. Carter, D. P. Fyhrie and R. T. Whalen, J. Biomech. 20 (1987) 785.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Gagik P. Parsamian
    • 1
  • Timothy L. Norman
    • 1
  1. 1.Musculoskeletal Research Center, Departments of Mechanical and Aerospace Engineering and OrthopedicsWest Virginia UniversityMorgantownUSA

Personalised recommendations