Advertisement

Czechoslovak Journal of Physics

, Volume 51, Issue 7, pp 719–726 | Cite as

Mechanism of solid-state oxidation of FeSO4·H2O: model of simultaneous reactions

  • R. Zboril
  • M. Mashlan
  • D. Krausova
Article

Abstract

The mechanism of the thermal transformation of FeSO4·H2O in air has been studied under isothermal conditions at temperatures (150–460)°C using mainly57Fe Mössbauer spectroscopy and X-ray powder diffraction (XRD). Two trends are typical for the thermal behaviour of FeSO4·H2O in air, a tendency toward oxidation and dehydration. We suggested a new transformation model consisting of two ways of oxidation, direct one and indirect one. Fe(OH)SO4 was identified as a product of the direct way, Fe2(SO4)3 and superparamagnetic nanoparticles ofγ-Fe2O3 as products of the indirect way. The suggested model of simultaneous reactions explains the unusual non-monotonous dependence of the oxidation level of the thermally treated samples on temperature.

Keywords

FeSO4 Maghemite Oxidation Level Thermal Transformation Simultaneous Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Skeff Neto and V. K. Garg: J. Inorg. Nucl. Chem.37 (1975) 2287.CrossRefGoogle Scholar
  2. [2]
    A.H. Kamel, Z. Sawires, H. Khalifa, S. A. Saleh, and A. M. Abdallah: J. Appl. Chem. Biotechnol.22 (1972) 591.CrossRefGoogle Scholar
  3. [3]
    A. Bristoti, J. I. Kunrath, P. J. Viccaro and L. Bergter: J. Inorg. Nucl. Chem.37 (1975) 1149.CrossRefGoogle Scholar
  4. [4]
    A. Vertes and B. Zsoldos: Acta Chim. Acad. Sci. Hungar.65 (1970) 261.Google Scholar
  5. [5]
    T. P. Prasad: J. Therm. Anal.31 (1986) 553.CrossRefGoogle Scholar
  6. [6]
    N. Sh. Safiulin, E. B. Gitis, and N. M. Panasenko: Zh. Neorg. Khim.13 (1968) 2898.Google Scholar
  7. [7]
    Y. Pelovski, V. Petkova, and S. Nikolov: Thermochim. Acta274 (1996) 273.CrossRefGoogle Scholar
  8. [8]
    E. V. Margulis, M. M. Shokarev, L. A. Savtchenko, N. I. Kopylov, and L. I. Bejsekeeva: Zh. Neorg. Khim.16 (1971) 734.Google Scholar
  9. [9]
    P. K. Gallagher, D. W. Johnson, and F. Schrey: J. Am. Ceram. Soc.53 (1970) 666.CrossRefGoogle Scholar
  10. [10]
    D. W. Johnson and P. K. Gallagher: J. Phys. Chem.75 (1971) 1179.CrossRefGoogle Scholar
  11. [11]
    H. M. Ismail, M. I. Zaki, A. M. Hussein, and M. N. Magar: Powder Technol.63 (1990) 87.CrossRefGoogle Scholar
  12. [12]
    P. G. Coombs and Z. A. Munir: J. Therm. Anal.35 (1989) 967.CrossRefGoogle Scholar
  13. [13]
    Powder Diffraction File 1997, International Center for Diffraction Data, Pennsylvania, U.S.A.Google Scholar
  14. [14]
    R. Zboril, M. Mashlan, and D. Krausova: inMössbauer Spectroscopy in Materials Science (Eds. M. Miglierini and D. Petridis). Kluwer Academic Publishers, Dordrecht, 1999, p. 49.Google Scholar
  15. [15]
    R. Zboril, M. Mashlan, D. Krausova, and P. Pikal: Hyperfine Interact.121–122 (1999) 497.CrossRefGoogle Scholar
  16. [16]
    C. Pascal, J.L. Pascal, F. Favier, M.L. Elidrissi Moubtassim, and C. Payen: Chem. Mater.11 (1999) 141.CrossRefGoogle Scholar
  17. [17]
    P. Prené, E. Tronc, J.P. Jolivet, and J.L. Dormann: inProc. Conf. ICAME-95, 10–16 September 1995 (Ed. I. Ortalli), Italian Physical Society, Bologna, 1996, p. 485.Google Scholar
  18. [18]
    S. Morup, F. Bodker, P.V. Hendriksen, and S. Linderoth: Phys. Rev. B52 (1995) 287.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 2001

Authors and Affiliations

  • R. Zboril
    • 1
  • M. Mashlan
    • 1
  • D. Krausova
    • 2
  1. 1.Department of Experimental PhysicsPalacký UniversityOlomoucCzech Republic
  2. 2.Department of Inorganic and Physical ChemistryPalacký UniversityOlomoucCzech Republic

Personalised recommendations