, Volume 441, Issue 1, pp 185–236 | Cite as

Interbreeding versus morphological and ecological differentiation in Mediterranean Diamysis (Crustacea, Mysidacea), with description of four new taxa

  • Antonio P. Ariani
  • Karl J. Wittmann


Hybridization experiments in the laboratory, performed until the F1 free-living juvenile stage, showed failure of embryonic development in crossbreedings between certain populations of mysids from meso- to metahaline waters of the Mediterranean that were previously lumped together under the name Diamysis bahirensis (G. O. Sars). Western Mediterranean populations did not successfully crossbreed with those from the eastern basin and vice versa. This is consistent with the W-E morphological differentiation in this genus and with different salinity affinities of the western as compared to the eastern forms. From the study of type material, the diagnosis of D. bahirensis is redefined to populations in the SW-Mediterranean showing large spiniform projections of the sixth pleonite, flanking the telson, and numerous small fringes on the posterior margin of the male carapace. Crossbreeding was unsuccessful with populations of D. mesohalobia n. sp. in the E-Mediterranean, which show smooth posterior margin of the carapace in both sexes and distally pectinate paradactylary setae on certain pereiopods, at least in females. Within this species, three morphotypes with different salinity affinities in nature are distinguished; as they showed successful laboratory interbreeding under mesohaline conditions, the taxa, therefore, are defined at subspecific level (D. mesohalobia mesohalobia, D. mesohalobia gracilipes n. ssp., D. mesohalobia heterandra n. ssp.). Populations of these three subspecies failed to crossbreed with a W-Mediterranean (NE-Tyrrhenian) population of D. lagunaris n. sp., which is characterized by a smooth carapace in both sexes, cuticular `windows' on the eyestalks, and rounded projections of the sixth pleonite. In D. lagunaris, D. mesohalobia mesohalobia and D. mesohalobia gracilipes, survival of brood pouch larvae in the laboratory was higher under mesohaline compared with euhaline conditions. This along with biomineralogical and morphological similarities of the statoliths with fossil representatives from Miocene deposits of the brackish Paratethys, suggest a brackish water origin, even in euhalobiontic forms that may have immigrated into the sea from low salinity environments. A key to the 10 species and two subspecies in this genus is given.

hybridization tests sterility salinity effects taxonomic revision biogeography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida Prado-Por, M. S. De, 1981. Two new subspecies of the Diamysis bahirensis Sars species group (Crustacea: Mysidacea) from extreme salinity environments on the Israel and Sinai coasts. Israel J. Zool. 30: 161–175.Google Scholar
  2. Ariani, A. P., 1966. Su una forma di Diamysis bahirensis (G. O. Sars) rinvenuta in territorio pugliese. Boll. Zool. 33: 227–228.Google Scholar
  3. Ariani, A. P., 1967. Osservazioni su Misidacei della costa adriatica pugliese. Annuar. Ist. Mus. Zool. Univ. Napoli 18: 1–38, pls 1–3.Google Scholar
  4. Ariani, A. P., 1979. Contribution à l'étude écotaxonomique et biogéographique des Diamysis d'eau saumâ tre de la Méditerrannée. Rapp. Comm. int. Mer Médit. 25/26(3): 159–160.Google Scholar
  5. Ariani, A. P., 1981a. Expériences d'hybridation entre populations méditerranéennes du genre Diamysis. Rapp. Comm. int. Mer Médit. 27(4): 177–180.Google Scholar
  6. Ariani, A. P., 1981b. Systématique du genre Diamysis et paléogéographie de la Méditerranée. In: Journées Étud. Systém. Biogéogr. Médit. C.I.E.S.M., Cagliari, 1980: 121–130.Google Scholar
  7. Ariani, A. P., 1982. Osservazioni e ricerche su Typhlocaris salentina (Crustacea, Decapoda) e Spelaeomysis bottazzii (Crustacea, Mysidacea). Approccio idrogeologico e biologico sperimentale allo studio del popolamento acquatico ipogeo della Puglia. Annuar. Ist. Mus Zool. Univ. Napoli 25: 201–326.Google Scholar
  8. Ariani, A. P., 1986. Caractérisation hydrogéologique du domaine saumâ tre des Pouilles. Rapp. Comm. int. Mer Médit. 30(2): 47.Google Scholar
  9. Ariani, A. P. & K. J. Wittmann, 1998. Ecological and biogeographical aspects of speciation in Mediterranean Diamysis (Mysidacea). Proceedings and Abstracts of the 4th international Crustacean Congress, Amsterdam, 20–24 July 1998. Abstract 393: 160.Google Scholar
  10. Ariani, A. P., K. J. Wittmann & E. Franco, 1993. A comparative study of static bodies in mysid crustaceans: evolutionary implications of crystallographic characteristics. Biol. Bull. 185: 393–404.Google Scholar
  11. Ariani, A. P., G. Balassone, G. Mirone & K. J. Wittmann, 1999. Experimentally induced mineral phase change and morphological aberrations in CaCO3 statoliths of Mysidacea. In Schram, F. R. & J. C. Von Vaupel Klein (eds), Crustaceans and the Biodiversity Crisis. Brill, Leiden: 859–870.Google Scholar
  12. Ariani, A. P., F. Marmo, G. Balsamo & E. Franco, 1981. Vaterite in the statoliths of a mysid crustacean (Diamysis bahirensis). Annuar. Ist. Mus. Zool. Univ. Napoli 24: 69–78.Google Scholar
  13. Ariani, A. P., F. Marmo, G. Balsamo, G. Cesaro & N. Maresca, 1982. Prime osservazioni sullo sviluppo degli statoliti di Crostacei Misidacei. Annuar. Ist. Mus. Zool. Univ. Napoli 25: 327–341.Google Scholar
  14. Ariani, A. P., F. Marmo, G. Balsamo, E. Franco & K. J. Wittmann, 1983. The mineral composition of statoliths in relation to taxonomy and ecology in mysids. Rapp. Comm. int. Mer Médit. 28(6): 333–336.Google Scholar
  15. Avčin, A., I. Keržan, L. Kubik, N. Meith-Avčin, J. Štirn, P. Tušnik, T. Valentinčič, B. Vrišer & S. Vukovič, 1973. Aquatic systems in the Bay of Strunjan I. Marine Science Contributions 5. Inst. Biol. Univ. Ljubljana: 168–216 (in Slov.).Google Scholar
  16. Bacci, G. & M. La Greca, 1953. Genetic and morphological evidence for subspecific differences between Naples and Plymouth populations of Ophryotrocha puerilis. Nature 171: 1115.Google Scholar
  17. Băcescu, M., 1940. Les Mysidacés des eaux roumaines: étude taxonomique, morphologique, biogéographique et biologique. Ann. sci. Univ. Jassy 26: 454–804, pls 1–4.Google Scholar
  18. Băcescu, M., 1941. Les Mysidacés des eaux méditerranéennes de la France (spécialment de Banyuls) et des eaux de Monaco. Bull. Inst. océanogr., Monaco 795: 1–46.Google Scholar
  19. Băcescu, M., 1954. Crustacea: Mysidacea Fauna Rep. popul. romî ne 4(3): 126 pp. (in Roum.).Google Scholar
  20. Băcescu, M., 1981. Problè mes de systématique évolutive concernant quelques Crustacés de la Mer Noire. In: Journées Étud. Systém. Biogéogr. Médit. C.I.E.S.M., Cagliari, 1980: 85–88.Google Scholar
  21. Bamber, R. N. & P. A. Henderson, 1990. A new freshwater mysid from the Amazon, with a reassessment of Surinamysis Bowman (Crustacea: Mysidacea). Zool. J. linn. Soc. 100: 393–401.Google Scholar
  22. Bono, P. (ed.), 1985. Seminario Informativo sui Risultati del Progetto 'Laghi costieri', Terracina 30/31 Gennaio 1985. Vol. 1 (Gruppo di Geologia). Amm. prov. di Latina, Univ. 'La Sapienza', Roma, 163 pp.Google Scholar
  23. Bowman, T. E., 1977. A review of the genus Antromysis (Crustacea: Mysidacea), including new species from Jamaica and Oaxaca, Mexico, and a redescription and new records for A. cenotensis. In Reddell, J. R. (ed.), Studies on the Caves and Cave Fauna of the Yucatan Peninsula. Assoc. mexican Cave Stud. Bull. 6: 27–38.Google Scholar
  24. Campolmi, M., A. Vaccaro & A. Mazzola, 2000. First data on the mysid community in the Stagnone di Marsala (western Sicily). In Faranda, F. M., L. Guglielmo & G. Spezie (eds), Structures and Processes in the Mediterranean Ecosystems. Springer Verlag (in press).Google Scholar
  25. Cunha, M. R. Da, M. H. Moreira & J. C. Sorbe, 2000. Diamysis bahirensis: a mysid species new to the Portuguese fauna and first record from the west European coast. In Vaupel Klein, J. C. von & F. R. Schram (eds), The Biodiversity Crisis and Crustacea. Crustacean Issues 12, A. A. Balkema, Rotterdam, 139–152.Google Scholar
  26. Czerniavsky, V., 1882. Monographia Mysidarum inprimis Imperii Rossici. Fasc. 1, 2. Trudy St-peterburgsko Obsch. Est. 12: 1–170, 13: 1–85, pls 1–4.Google Scholar
  27. Czerniavsky, V., 1887. Monographia Mysidarum inprimis Imperii Rossici. Fasc. 3. Trudy St-peterburgsko Obsch. Est. 18: 1–102, pls 5–32.Google Scholar
  28. De Matthaeis, E., R. Colognola, V. Sbordoni, M. Cobolli Sbordoni & G. L. Pesce, 1982. Genetic differentiation and variability in cave dwelling and brackish water populations of Mysidacea (Crustacea). Z. zool. Syst. Evol. 20: 198–208.Google Scholar
  29. Drake, P., A.M. Arias & M. Conradi, 1997. Aportació n al conocimiento de la macrofauna supra y epibentó nica de los cañ os mareales de la bahía de Cádiz (Españ a). Publ. espec. Inst. esp. oceanogr. 23: 133–141.Google Scholar
  30. Dumont, H. J., 1998. The Caspian Lake: History, biota, structure and function. Limnol. Oceanogr. 43: 44–52.Google Scholar
  31. Fage, L., 1941. Mysidacea Lophogastrida-I. DANA-Report 19: 1–52.Google Scholar
  32. Fox, H. M., 1926. Zoological results of the Cambridge expedition to the Suez Canal, 1924. I. General Part. Trans. zool. Soc. London 22(1/1): 1–64.Google Scholar
  33. Gardner, J. P. A., 1997. Hybridization in the sea. Adv. mar. Biol. 31: 1–78.Google Scholar
  34. Genovese, S., 1956. Su due Misidacei dei laghi di Ganzirri e di Faro. Boll. Zool. 23: 177–197.Google Scholar
  35. Goedmakers, A. & A. L. Roux, 1975. Essais d'hybridation entre plusiers populations de Gammarus du groupe pulex (Amphipoda). Crustaceana 29: 99–109.Google Scholar
  36. Gourret, M. P., 1897. Les étangs saumâ tres du midi de la France et leurs pê cheries. Ann.Mus. Hist. nat.Marseille-Zool. 5(1): I-XI, 1–386.Google Scholar
  37. Hatzakis, A., 1982. Mysidacea of Greek Seas (morphotaxonomy, eco-geography, bionomics.) Diss. Univ. Athens, 208 pp. (in Greek).Google Scholar
  38. Heldt, J. H., 1953. Contribution à l'étude de la faune carcinologique du Lac de Tunis. Bull. Soc. Sci. nat. Tunisie 6: 99–102.Google Scholar
  39. Holmquist, C., 1955. Die 'Mysis relicta' aus dem Mittelmeergebiet (= Diamysis bahirensis [G. O. Sars] 1877 und Paramysis helleri [G. O. Sars] 1877). Zool. Anz. 154: 277–288.Google Scholar
  40. Hsü, K. J., L. Montandert, D. Bernoulli, M. B. Cita, A. Erickson, R. E. Garrison, R. B. Kidd, F. Mè lierés, C. Müller & R. Wright, 1977. History of the Mediterranean salinity crisis. Nature 267: 399–403.Google Scholar
  41. Klepal, W. & R. T. Kastner, 1980. Morphology and differentiation of non-sensory cuticular structures in Mysidacea, Cumacea and Tanaidacea (Crustacea, Peracarida). Zoologica Scripta 9: 271–281.Google Scholar
  42. Kolding, S., 1985. Genetic adaptation to local habitats and speciation process within the genus Gammarus (Amphipoda: Crustacea). Mar. Biol. 89: 249–255.Google Scholar
  43. Maissuradze, L. S. & G. Popescu, 1987. Carpatho-Caucasian comparative study of Sarmatian mysids. D. S. Inst. Geol. Geofiz. 72–73/3: 75–80.Google Scholar
  44. Matjaši¡c, J. & J. Štirn, 1975. The flora and fauna of the North Adriatic-Contribution 1. Slov. Akad. Znan. Umet., Ljubljana; 54 pp. (in Slov.).Google Scholar
  45. Mauchline, J., 1973. The broods of British Mysidacea (Crustacea). J. mar. biol. Ass. U.K. 53: 801–817.Google Scholar
  46. Mauchline, J., 1980. The biology of mysids and euphausiids. Adv. mar. Biol. 18: 1–681.Google Scholar
  47. Minelli, A. & E. Trevisanello, 1985. Considerazioni sulla fauna legata alle macrofite in un tratto del Fiume Sile (Italia nordorientale). Soc. venez. Sci. nat. 10: 79–96.Google Scholar
  48. Mordukhai-Boltovskoi, Ph. D., 1979. Composition and distribution of Caspian fauna in the light of modern data. Int. Rev. ges. Hydrobiol. 64: 1–38.Google Scholar
  49. Nouvel, H., 1965. Mysidacés récoltés par S. Frontier a Nosy-Bé. II. Description de deux Mysini appartenant aux genres Diamysis et Acanthomysis. Bull. Soc. Hist. nat. Toulouse 100: 451–464.Google Scholar
  50. Nouvel, H. & L. Nouvel, 1939. Observations sur la biologie d'une Mysis: Praunus flexuosus (Müller, 1788). Bull. Inst. océanogr., Monaco 761: 1–10.Google Scholar
  51. Parenzan, P., 1960. Il Mar Piccolo di Taranto. Giovanni Semerano, Roma; 254 pp.Google Scholar
  52. Pinkster, S. & M. Scheepmaker, 1994. Hybridization experiments and the taxonomy of Gammarus (Amphipoda): a contribution to the understanding of controversal results. Crustaceana 66: 129–143.Google Scholar
  53. Por, F. D., 1972. Hydrobiological notes on the high-salinity waters of the Sinai peninsula. Mar. Biol. 14: 111–119.Google Scholar
  54. Por, F. D., 1978. Lessepsian migration. The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. In Billings, W. D., F. Golley, O. L. Lange & J. S. Olson (eds), Ecological Studies 23. Springer, Berlin: 228 pp.Google Scholar
  55. Por, F. D., 1985. Actuopaleontology of the Messinian salinity crisis. Rapp. Comm. int. Mer Médit. 29(4): 135–136.Google Scholar
  56. Roux, A. L., 1971. Les Gammares du groupe pulex. Essai de systématique biologique, 3. Essais d'hybridation et examen caryologique. Arch. Zool. exp. gén. 112: 819–868.Google Scholar
  57. Sars, G. O., 1877. Nye Bidrag til Kundskaben om Middelhavets Invertebrat fauna. I. Middelhavets Mysider. Arch. Math. Naturv. (Kristiania) 2: 10–119, 36 pls.Google Scholar
  58. Sars, G. O., 1885. Description d'une espè ce nouvelle de Mysis. Bull. Soc. Amis Sci. nat. Rouen, ser. 3, 21: 92–98, 1 pl.Google Scholar
  59. Sars, G. O., 1907. Mysidae. Report Kaspian Expedition 1904. 1: 243–313, 12 pls.Google Scholar
  60. Schlacher, T. A., K. J. Wittmann & A. P. Ariani, 1992. Comparative morphology and actuopalaeontology of mysid statoliths (Crustacea, Mysidacea). Zoomorphology 112: 67–79.Google Scholar
  61. Spandl, H., 1926. Beiträge zur Kenntnis der im Süß wasser Europas vorkommenden Mysidaceen. Int. Rev. ges. Hydrobiol. 15: 358–375.Google Scholar
  62. Stammer, H. J., 1932. Die Fauna des Timavo. Ein Beitrag zur Kenntnis der Höhlengewässer, des Süß -und Brackwassers im Karst. Zool. Jahrb. Abt. Syst. 63: 521–656.Google Scholar
  63. Sudry, L., 1910. L'Étang de Thau. Ann. Inst. océanogr., Monaco 1(10): 1–210.Google Scholar
  64. Tattersall, W. M., 1927. XI. Report on the Crustacea Mysidacea. In: Zoological Results of the Cambridge Expedition to the Suez Canal, 1924. Trans. zool. Soc. London 22: 158–198.Google Scholar
  65. Tattersall, W. M. & O. S. Tattersall, 1951. The British Mysidacea. Ray Society, publ. 136, London: 460 pp.Google Scholar
  66. Tursi, A., 1989. Caratteristiche ecologiche dei Laghi Alimini. In: Ecologia del Salento, 2° corso, quaderno no 4. Museo Missionario Cinese di Storia Naturale, Lecce: 25–58.Google Scholar
  67. UNESCO, 1985. The international system of units (SI) in oceanography. Unesco technical papers in marine science 45 (IAPSO Publ. sci. 32), Paris: 124 pp.Google Scholar
  68. Väinölä, R. & J. K. Vainio, 1998. Distributions, life cycles and hybridization of two Mysis relicta group species (Crustacea: Mysida) in the northern Baltic Sea and Lake Bå ven. Hydrobiologia 368: 137–148.Google Scholar
  69. Voicu, G., 1974. Identification des Mysidés fossiles dans les dépô ts du Miocè ne supérieur de la Paratéthys Centrale et Orientale et leur importance paléontologique, stratigraphique et paléogéographique. Geol. carpath., Bratislava 25: 231–239.Google Scholar
  70. Voicu, G., 1981. Upper Miocene and Recent mysid statoliths in central and eastern Paratethys. Micropaleontology 27: 227–247.Google Scholar
  71. Wittmann, K. J., 1978. Adoption, replacement and identification of young in marine Mysidacea (Crustacea). J. exp. mar. Biol. Ecol. 32: 259–274.Google Scholar
  72. Wittmann, K. J., 1981a. Comparative biology and morphology of marsupial development in Leptomysis and other Mediterranean Mysidacea (Crustacea). J. exp. mar. Biol. Ecol. 52: 243–270.Google Scholar
  73. Wittmann, K. J., 1981b. On the breeding biology and physiology of marsupial development in Mediterranean Leptomysis (Mysidacea: Crustacea) with special reference to the effects of temperature and egg size. J. exp. mar. Biol. Ecol. 53: 261–279.Google Scholar
  74. Wittmann, K. J., 1982. Untersuchungen zur Sexualbiologie einer mediterranen Mysidacee (Crustacea), Leptomysis lingvura G. O. Sars. Zool. Anz. 209: 362–375.Google Scholar
  75. Wittmann, K. J., 1984. Ecophysiology of marsupial development and reproduction in Mysidacea (Crustacea). Oceanogr. mar. Biol. ann. Rev. 22: 393–428.Google Scholar
  76. Wittmann, K. J., 1985. Freilanduntersuchungen zur Lebensweise von Pyroleptomysis rubra, einer neuen bentho-pelagischen Mysidacee aus dem Mittelmeer und dem Roten Meer. Crustaceana 48: 153–166.Google Scholar
  77. Wittmann, K. J., 1986. A revision of the genus Paraleptomysis Liu & Wang (Crustacea: Mysidacea). Sarsia 71: 147–160.Google Scholar
  78. Wittmann K. J., 1992a. Presenza di ciclomorfosi e sue peculiarità nei crostacei Misidacei. Oebalia 17–2 (suppl.): 589–591.Google Scholar
  79. Wittmann K. J., 1992b. Cyclomorphosis in temperate zone Mysidacea: evidence and possible adaptive and taxonomical significance. In Köhn J.,M. B. Jones & A. Moffat (eds), Taxonomy, Biology and Ecology of (Baltic) Mysids (Mysidacea, Crustacea). Rostock Univ. Press: 25–32.Google Scholar
  80. Wittmann, K. J., 1992c. Morphogeographic variations in the genus Mesopodopsis Czerniavsky with description of three new species (Crustacea, Mysidacea). Hydrobiologia 241: 71–89.Google Scholar
  81. Wittmann, K. J., 1999. Global biodiversity in Mysidacea, with notes on the effects of human impact. In Schram, F. R. & J. C. Von Vaupel Klein (eds), Crustaceans and the Biodiversity Crisis. Brill, Leiden: 511–525.Google Scholar
  82. Wittmann, K. J. & A. P. Ariani, 1998. Diamysis bacescui n. sp., a new benthopelagic mysid (Crustacea: Peracarida) from Mediterranean seagrass meadows: description and comments on statolith composition. Trav. Mus. natl Hist. nat. “Grigore Antipa” 40: 35–49.Google Scholar
  83. Wittmann, K. J. & V. Stagl, 1996. Die Mysidaceen-Sammlung am Naturhistorischen Museum in Wien: eine kritische Sichtung im Spiegel der Sammlungsgeschichte. Ann. naturhist. Mus. Wien 98B: 157–191.Google Scholar
  84. Wittmann, K. J., A. P. Ariani & A. Stanzione, 1990. Implicazioni tassonomiche ed ecologiche di alcune caratteristiche biometriche degli statoliti dei Misidacei. Oebalia 16–2 (suppl.): 805–807.Google Scholar
  85. Wittmann, K. J., T. A. Schlacher & A. P. Ariani, 1993. Structure of Recent and fossil mysid statoliths (Crustacea, Mysidacea). J. Morphol. 215: 31–49.Google Scholar
  86. Wittmann, K. J., J. Theiss & M. Banning, 1999. Die Drift von Mysidacea und Decapoda und ihre Bedeutung für die Ausbreitung von Neozoen im Main-Donau-System. Lauterbornia 35: 53–66.Google Scholar
  87. Zaouali, J. & S. Baeten, 1984. Etude historique et évaluation actuelle de l'impact de l'eutrophisation sur l'écosystè me de la Lagune de Tunis. In: VIIes Journées Etud. Pollutions, Lucerne, C.I.E.S.M.: 671–678.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Antonio P. Ariani
    • 1
  • Karl J. Wittmann
    • 2
  1. 1.Dipartimento di ZoologiaUniversità di Napoli Federico IINapoliItaly
  2. 2.Lab. Ökophysiologie und ÖkotoxikologieInstitut für Medizinische Biologie der Universität WienViennaAustria

Personalised recommendations