Journal of Theoretical Probability

, Volume 14, Issue 3, pp 729–796 | Cite as

Occupation Time Fluctuations in Branching Systems

  • D. A. Dawson
  • L. G. Gorostiza
  • A. Wakolbinger


We consider particle systems in locally compact Abelian groups with particles moving according to a process with symmetric stationary independent increments and undergoing one and two levels of critical branching. We obtain long time fluctuation limits for the occupation time process of the one- and two-level systems. We give complete results for the case of finite variance branching, where the fluctuation limits are Gaussian random fields, and partial results for an example of infinite variance branching, where the fluctuation limits are stable random fields. The asymptotics of the occupation time fluctuations are determined by the Green potential operator G of the individual particle motion and its powers G2,G3, and by the growth as t→∞ of the operator \(G_t = \int_0^t {T_s } ds\)and its powers, where T t is the semigroup of the motion. The results are illustrated with two examples of motions: the symmetric α-stable Lévy process in \(\mathbb{R}^d (0 < \alpha \leqslant 2)\), and the so called c-hierarchical random walk in the hierarchical group of order N (0<c<N). We show that the two motions have analogous asymptotics of G t and its powers that depend on an order parameter γ for their transience/recurrence behavior. This parameter is γ=d/α−1 for the α-stable motion, and γ=log c/log(N/c) for the c-hierarchical random walk. As a consequence of these analogies, the asymptotics of the occupation time fluctuations of the corresponding branching particle systems are also analogous. In the case of the c-hierarchical random walk, however, the growth of G t and its powers is modulated by oscillations on a logarithmic time scale.

multilevel branching particle system occupation time fluctuation Green potential weak and strong transience stable Lévy process hierarchical random walk critical dimensions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, M. T., and Perkins, E. A. (1988). Brownian motion on the Sierpi?ski gasket. Probab. Th. Rel. Fields 79, 543–623.Google Scholar
  2. 2.
    Cartwright, D. I. (1988). Random walks on direct sums of discrete groups. J. Theor. Probab. 1, 341–356.Google Scholar
  3. 3.
    Collet, P., and Eckmann, J.-P. (1978). A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics 74, Springer-Verlag, Berlin/New York.Google Scholar
  4. 4.
    Cox, J. T., and Griffeath, D. (1984). Large deviations for Poisson systems of independent random walks. Probab. Th. Rel. Fields 66, 543–558.Google Scholar
  5. 5.
    Cox, J. T., and Griffeath, D. (1985). Occupation times for critical branching Brownian motions. Ann. Probab. 13, 1108–1132.Google Scholar
  6. 6.
    Dawson, D. A., and Gorostiza, L. G. (1990). Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim. 22, 241–263.Google Scholar
  7. 7.
    Dawson, D. A., and Greven, A. Multiple space-time scale analysis for interacting branching models. Electron. J. Probab. 1(14), 84.Google Scholar
  8. 8.
    Dawson, D. A., and Ivanoff, G. (1978). Branching diffusions and random measures. In Joffe, A., and Ney, P. (eds.), Branching Processes, M. Dekker, New York, pp. 61–103.Google Scholar
  9. 9.
    Dawson, D. A., and Hochberg, K. J. (1991). A multilevel branching model. Adv. Appl. Prob. 23, 701–715.Google Scholar
  10. 10.
    Dawson, D. A., Hochberg, K. J., and Vinogradov, V. (1996). High-density limits of hierarchically structured branching-diffusing populations. Stoch. Proc. Appl. 62, 191–222.Google Scholar
  11. 11.
    Dawson, D. A., and Perkins, E. (1991). Historical Processes. Memoirs of the AMS 454, Providence, Rhode Island.Google Scholar
  12. 12.
    Dawson, D. A., and Perkins, E. (1999). Measure-valued processes and renormalization of branching particle systems. In Carmona, R. A., and Rozovskii, B. (eds.), Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys and Monographs, Vol. 64, AMS, pp. 45–106.Google Scholar
  13. 13.
    Deuschel, J. D., and Rosen, J. (1998). Occupation time large deviations for critical branching Brownian motion, super-Brownian motion and related processes. Ann. Probab. 26, 602–643.Google Scholar
  14. 14.
    Deuschel, J. D., and Wang, K. (1994). Large deviations for the occupation time functional of a Poisson system of independent Brownian particles. Stoch. Proc. Appl. 52, 183–209.Google Scholar
  15. 15.
    Fleischmann, K., and Greven, A. (1994). Diffusive clustering in an infinite system of hierarchically interacting diffusions. Probab. Th. Rel. Fields 98, 517–566.Google Scholar
  16. 16.
    Gorostiza, L. G. (1996). Asymptotic fluctuations and critical dimension for a two-level branching system. Bernoulli 2, 109–132.Google Scholar
  17. 17.
    Gorostiza, L. G., Hochberg, K., and Wakolbinger, A. (1995). Persistence of a critical super-2 process. J. Appl. Prob. 32, 534–540.Google Scholar
  18. 18.
    Gorostiza, L. G., and López-Mimbela, J. A. (1994). An occupation time approach for convergence of measure-valued processes, and the death process of a branching system. Stat. Prob. Lett. 21, 59–67.Google Scholar
  19. 19.
    Gorostiza, L. G., Roelly-Coppoletta, S., and Wakolbinger, A. (1990). Sur la persistence du processus de DawsonûWatanabe stable. In Azéma, J., Meyer, P. A., and Yor, M. (eds.), Séminaire de Probabilités XXIV, Lecture Notes Math., Vol. 1426, Springer-Verlag, Berlin, pp. 275–281.Google Scholar
  20. 20.
    Gorostiza, L. G., and Rodrigues, E.R. (1999). A stochastic model for transport of particulate matter in air: An asymptotic analysis. Acta Applicandae Mathematicae 59, 21–43.Google Scholar
  21. 21.
    Gorostiza, L. G., and Wakolbinger, A. (1991). Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19, 266–288.Google Scholar
  22. 22.
    Gorostiza, L. G., and Wakolbinger, A. (1994). Long time behavior of critical particle systems and applications. In Dawson, D. A. (ed.), Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, CRM Proc. and Lecture Notes, Vol. 5, AMS, pp. 119–137.Google Scholar
  23. 23.
    Grabner, P. J. and Woess, W. (1997). Functional iterations and periodic oscillations for simple random walk on the Sierpi?ski gasket. Stoch. Proc. Appl. 69, 127–138.Google Scholar
  24. 24.
    Greven, A., and Hochberg, K. J. (2000). New behavioral patterns for two-level branching systems. In Gorostiza, L. G., and Ivanoff, B. G. (eds.), Stochastic Models, CMS Conference Proceedings, Vol. 26, AMS, pp. 205–215.Google Scholar
  25. 25.
    Hochberg, K. J. (1995). Hierarchically structured branching populations with spatial motion. Rocky Mountain J. Math. 25, 269–283.Google Scholar
  26. 26.
    Hochberg, K. J., and Wakolbinger, A. (1995). Non-persistence of two-level branching particle systems in low dimensions. In Etheridge, A. (ed.), Stochastic Partial Differential Equations, London Mathem. Soc. Lecture Note Series, Vol. 216, Cambridge Univ. Press, pp. 126–140.Google Scholar
  27. 27.
    Iscoe, I. (1986). A weighted occupation time for a class of measure-valued branching processes. Probab. Th. Rel. Fields 71, 85–116.Google Scholar
  28. 28.
    Kallenberg, O. (1983). RandomMeasures, 3rd edn., Akademie-Verlag, Berlin, Academic Press, New York.Google Scholar
  29. 29.
    Kesten, H., and Spitzer, F. (1965). Random walks on countably infinite Abelian groups. Acta Math. 114, 237–265.Google Scholar
  30. 30.
    Klenke, A. (1997). Multiple scale analysis of clusters in spacial branching models. Ann. Probab. 25, 1670–1711.Google Scholar
  31. 31.
    Liemant, A., Matthes, K., and Wakolbinger, A. (1998). EquilibriumDistributions of Branching Processes, Akademie-Verlag, Berlin and Kluwer, Dordrecht.Google Scholar
  32. 32.
    Méléard, S., and Roelly, S. (1992). An ergodic result for critical spatial branching systems. Stochastic Analysis and Related Topics, Progress in Probability, Vol. 31, Birkhauser, Boston, pp. 333–341.Google Scholar
  33. 33.
    Port, S. C., and Stone, C. J. (1971). Infinitely divisible processes and their potential theory (First Part). Ann. Inst. Fourier 21(2), 157–275.Google Scholar
  34. 34.
    Sato, K. (1996). Criteria of weak and strong transience for Lévy processes. In Probability Theory and Mathematical Statistics, Proceedings of the Seventh Japan-Russia Symposium, World Scientific, Singapore, pp. 438–449.Google Scholar
  35. 35.
    Sawyer, S., and Felsenstein, J. (1983). Isolation by distance in a hierarchically clustered population. J. Appl. Prob. 20, 1–10.Google Scholar
  36. 36.
    Sinai, Ya. G. (1982). Theory of Phase Transitions: Rigorous results, Pergamon Press.Google Scholar
  37. 37.
    Spitzer, F. (1964). Principles of RandomWalk, Van Nostrand, Princeton.Google Scholar
  38. 38.
    Stöckl, A., and Wakolbinger, A. (1994). On clan-recurrence and-transience in time stationary branching Brownian particle systems. In Dawson, D. A. (ed.), Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, CRM Proc. and Lecture Notes, Vol. 5, AMS, pp. 213–219.Google Scholar
  39. 39.
    Wilson, K. (1976). The renormalization group and block spins. In Pál, L., and Szépfalusy, P. (eds.), Proceedings of the International Conference on Statistical Physics, North Holland, Amsterdam.Google Scholar
  40. 40.
    Wu, Y. (1994). Asymptotic behavior of two level measure branching processes. Ann. Probab. 22, 854–874.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. A. Dawson
    • 1
  • L. G. Gorostiza
    • 2
  • A. Wakolbinger
    • 3
  1. 1.The Fields InstituteTorontoCanada
  2. 2.Centro de Investigación y de Estudios AvanzadosMexico D.F.Mexico
  3. 3.Johann Wolfgang Goethe–UniversitätFrankfurt am MainGermany

Personalised recommendations