Advertisement

Hydrobiologia

, Volume 450, Issue 1–3, pp 187–196 | Cite as

Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kütz. (Chlorophyta)

  • Jane C. Marks
  • Mary E. Power
Article

Abstract

Cladophora glomerata is a widely distributed filamentous freshwater alga that hosts a complex microalgal epiphyte assemblage. We manipulated nutrients and epiphyte abundances to access their effects on epiphyte biomass, epiphyte species composition, and C. glomerata growth. C. glomerata did not grow in response to these manipulations. Similarly, nutrient and epiphyte removal treatments did not alter epiphyte biovolume. Epiphyte species composition, however, changed dramatically with nutrient enrichment. The epiphyte assemblage on unenriched C. glomerata was dominated by Epithemia sorex and Epithemia adnata, whereas the assemblage on enriched C. glomerata was dominated by Achnanthidium minutissimum, Nitzschia palea and Synedra spp. These results indicate that nutrients strongly structure epiphyte species composition. Interactions between C. glomerata and its epiphytes were not affected by epiphyte species composition in our experiment but may be when C. glomerata is actively growing.

Cladophora glomerata epiphytes nutrients species composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benenati, P. L., J. P. Shannon & D. W. Blinn, 1998. Desiccation and recolonization of phytobenthos in a regulated desert river: Colorado River at Lees Ferry, Arizona, U.S.A. Regul. Rivers:Res. Mgmt 14: 519–532.Google Scholar
  2. Bergey, E. A., C. A. Boettiger & V. H. Resh, 1995. Effects of water velocity on the architecture and epiphytes of Cladophora glomerata (Chlorophyta). J. Phycol. 31: 264–271.Google Scholar
  3. Bronmark, C., 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 45: 26–30.Google Scholar
  4. Burkholder, J. M. & R. G. Wetzel, 1990. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. Oceanogr. 35: 736–746.Google Scholar
  5. Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.Google Scholar
  6. Cattaneo, A., 1983. Grazing on epiphytes. Limnol. Oceanogr. 28: 124–132.Google Scholar
  7. Chudyba, H., 1968. C. glomerata and concomitant algae in the River Skawa. Distribution and conditions of appearance. Acta Hydrobiol. 10: 39–84.Google Scholar
  8. Deyoe, H., R. L. Lowe & J. C. Marks, 1992. Effects of nitrogen and phosphorus on the endosymbiont abundance of Rhopalodia gibba and Epithemia turgida (Bacillariophyceae). J. Phycol. 28: 773–777.Google Scholar
  9. Dodds, W. K., 1991a. Community interactions between the filamentous alga C. glomerata (L.) Kutzing, its epiphytes and epiphyte grazers. Oecologia 85: 572–580.CrossRefGoogle Scholar
  10. Dodds, W. K., 1991b. Micro-environmental characteristics of filamentous algal communities in flowing freshwaters. Freshwat. Biol. 25: 199–209.Google Scholar
  11. Dodds, W. K. 1991c. Factors associated with dominance of the filamentous green alga Cladophora glomerata. Wat. Res. 25: 1325–1332.Google Scholar
  12. Dodds, W. K. & D. A. Gudder, 1992. The ecology of Cladophora. J. Phycol. 28: 415–427.Google Scholar
  13. Dudley, T. L., 1992. Beneficial effects of herbivores on stream macroalgae via epiphyte removal. Oikos 65: 121–127.Google Scholar
  14. Fairchild, G. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472.Google Scholar
  15. Floener, L. & H. Bothe, 1980. Nitrogen fixation in Rhopalodia gibba, a diatom containing blue-greenish inclusions symbiotically. In Schwemmler W. & H. E. A. Schwenk (eds), Endocytobiology, Endosymbiosis and Cell Biology. Vol. I. Walter de gruyter, Berlin, Germany: 514–552.Google Scholar
  16. Haberyan, K. A. & O. K. Mhone, 1991. Algal communities near Cape Maclear, southern Lake Malawi, Africa. Hydrobiologia 215: 175–188.Google Scholar
  17. Hardwick, G. G., D. W. Blinn & H. D. Usher, 1992. Epiphytic diatoms on Cladophora glomerata in the Colorado River, Arizona: Longitudinal and vertical distribution in a regulated river. The Southwestern Naturalist 37: 148–156.Google Scholar
  18. Hawkes, H. A., 1964. Effects of domestic and industrial discharges of the ecology of riffles in Midland streams. In International Conference on Water Pollution Research. Pergamon Press, London: 293–317.Google Scholar
  19. Hoffman, J. P. & L. E. Graham, 1984. Effects of selected physicochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta). J. Phycol. 20: 1–7.Google Scholar
  20. Jao, C., 1944. Studies on the fresh-water algae of China XII. The attached algal communities of the Kialing River. Sinensia Acad. Sinica 15: 61–91.Google Scholar
  21. Jonsson, G. S., 1987. The depth-distribution and biomass of epilithic periphyton in Lake Thingvallavatn, Iceland. Arch. Hydrobiol. 108: 531–547.Google Scholar
  22. Kupferberg, S., 1997. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwat. Biol. 37: 427–439.Google Scholar
  23. Kupferberg, S. J., J. C. Marks & M. E. Power, 1994. Effects of variation in natural algal and detrital diets on larval anuran (Hyla regilla) life history. Copeia 2: 446–457.Google Scholar
  24. Lowe, R. L., B. H. Rosen & J. C. Kingston, 1982. A comparison of epiphytes on Bangia atropurpurea (Rhodophyta) and Cladophora glomerata (Chlorophyta) from northern Lake Michigan. J. Great Lakes Res. 8: 164–168.Google Scholar
  25. Luttenton, M. R. & R. G. Rada, 1986. Effects of disturbance on epiphytic community architecture. J. Phycol. 22: 320–326.Google Scholar
  26. Manuel-Faler, C. Y., G. W. Minshall, R. W. Dunn & D. A. Bruns, 1984. In situ nitrogen enrichment experiments in two Idaho (U.S.A.) streams. Environ. Monit. Assess. 4: 67–89.Google Scholar
  27. Marks, J. C. & R. L. Lowe, 1993. Interactive effects of nutrient availability and light levels on the periphyton composition of a large oligotrophic lake. Can. J. Fish. aquat. Sci. 50: 1270–1278.Google Scholar
  28. Marks, J. C., M. E. Power & M. S. Parker, 2000. Flood disturbance, algal productivity and interannual variation in food chain length. Oikos, 90: 20–27.Google Scholar
  29. McShaffrey, D. & W. P. McCafferty, 1991. Ecological association of the mayfly Ephemerella neehami (Ephemeroptera: Ephemerellidae) and the green alga C. glomerata (Chlorophyta: Cladophoraceae). J. Freshwat. Ecol. 6: 383–394.Google Scholar
  30. O'Connell, J., E. D. Reavie & J. P. Smol, 1997. Assessment of water quality using epiphytic diatom assemblages on Cladophora from the St. Lawrence River (Canada). Diatom Res. 12(1): 55–70.Google Scholar
  31. Peabody, A. J. & B. A. Whitton, 1968. Algae of the River Wear I. Diatoms. The Naturalist 906: 89–96.Google Scholar
  32. Peterson, C. G., 1987. Gut passage and insect grazer selectivity of lotic diatoms. Freshwat. Biol. 18: 455–460.Google Scholar
  33. Peterson, C. G. & N. B. Grimm, 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J. n. am. Benthol. Soc. 11: 20–36.Google Scholar
  34. Power, M. E., M. S. Parker & J. T. Wooten, 1996. Disturbance and food chain length in rivers. In Polis G. A. and K. O. Winemiller (eds) Food Webs: Integration of Patterns and Dynamics. Chapman and Hall (N.Y.): 286–297.Google Scholar
  35. Rodgers, J. H., K. L. Dickson & J. Cairns, 1978. A chamber for in situ evaluations of periphyton productivity in lotic systems. Arch. Hydrobiol. 84: 389–398.Google Scholar
  36. Sheath, R. G. & M. O. Morison, 1982. Epiphytes on Cladophora glomerata in the Great Lakes and St. Lawrence Seaway with particular reference to the red alga Chroodactylon ramosum (Asterocytis smargdina). J. Phycol. 18: 385–391.Google Scholar
  37. Sheath, R. G. & K. M. Cole, 1992. Biogeography of stream macroalgae in North America. J. Phycol. 28: 448–460.Google Scholar
  38. Stevenson, R. J. & E. F. Stoermer, 1982a. Seasonal abundance patterns of diatoms on Cladophora in Lake Huron. J. Great Lakes Res. 8: 169–183.Google Scholar
  39. Stevenson, R. J. & E. F. Stoermer, 1982b. Abundance patterns of diatoms on Cladophora in Lake Huron with respect to a point source of wastewater treatment plant effluent. J. Great Lakes Res. 8: 184–195.Google Scholar
  40. Usher, H. D. & D. W. Blinn, 1990. Influence of various exposure periods on the biomass and chlorophyll a of C. glomerata (Chlorophyta). J. Phycol. 26: 244–249.Google Scholar
  41. Whitton, B. A., 1970. Biology of Cladophora in Freshwaters. Wat. Res. 4: 457–476.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jane C. Marks
    • 1
  • Mary E. Power
    • 2
  1. 1.Department of Biological SciencesNorthern Arizona UniversityFlagstaffU.S.A.
  2. 2.Department of Integrative BiologyUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations