, Volume 442, Issue 1–3, pp 157–164 | Cite as

Life-history variation related to the first adult instar in daphnids derived from diapausing and subitaneous eggs

  • Kestutis Arbačiauskas


Using a life-table approach, pairs of exephippial sibs of Daphnia pulex were surveyed for sources of variation in life-history traits, and daphnids derived from diapausing and subitaneous eggs were assessed for differences in variance for these traits. Significant variation due to initial body length and sibs pair effect was observed in traits of exephippial females at the first adult instar (FAI). These results suggest higher environmental and genetic variability of life-history traits at the FAI in daphnids hatching from diapausing eggs than that in parthenogenetically derived ones. Exephippial females exhibited significantly higher variation in life-history properties at the FAI in response to various food levels, as well as within a high food treatment. The largest difference was found for the size of the first clutch and the body length of the juveniles produced in this clutch. Variance for relative fitness in females emerging from diapause was also higher than that for ones derived from subitaneous eggs.

Life-history strategies in exephippial Daphnia hatching during the early season are adapted to optimal conditions, whereas individuals of another origin are adapted to more unpredictable environments, and demonstrate bet-hedging strategies.

Daphnia life-history diapause food 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbačiauskas, K., 1998. Life-history traits of exephippial and parthenogenetically derived daphnids: indicators of different life-history strategies. Arch. Hydrobiol. Beih. Ergebn. Limnol. 52: 339–358.Google Scholar
  2. Arbačiauskas, K. & Z. R. Gasiūnaitė, 1996. Growth and fecundity of Daphnia after diapause and their impact on the development of a population. Hydrobiologia 320: 209–222.Google Scholar
  3. Boersma, M., 1997a. Offspring size and parental fitness in Daphnia magna. Evol. Ecol. 11: 439–450.Google Scholar
  4. Boersma, M., 1997b. Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360: 79–88.Google Scholar
  5. Boersma, M., H. Boriss & S. E. Mitchell, 2000. Maternal effects after sexual reproduction in Daphnia magna. J. Plankton Res. 22: 279–285.Google Scholar
  6. Carvalho, G. R. & H. G. Wolf, 1989. Resting eggs of lake-Daphnia. I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshwat. Biol. 22: 459–470.Google Scholar
  7. De Meester, L., C. Cousyn & J. Vanoverbeke, 1998. Chemical interactions, maternal effects and the hatching of Daphnia diapausing eggs. Arch. Hydrobiol. Beih. Ergebn. Limnol. 52: 263–272.Google Scholar
  8. De Meester, L. & H. De Jager, 1993. Hatching of Daphnia sexual eggs. 1. Intraspecific differences in the hatching response of D. magna eggs. Freshwat. Biol. 30: 219–226.Google Scholar
  9. De Stasio, B. T., Jr., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35: 1079–1090.Google Scholar
  10. Ebert, D., 1993. The trade-off between offspring size and number in Daphnia magna: the influence of genetic, environmental and maternal effects. Arch. Hydrobiol. suppl. 90: 453–473.Google Scholar
  11. Ebert, D., L. Yampolsky & S. C. Stearns, 1993. Genetics of life history in Daphnia magna. I. Heritabilities at two food levels. Heredity 70: 335–343.Google Scholar
  12. Evans, A. S. & R. J. Cabin, 1995. Can dormancy affect the evolution of post-germination traits? The case of Lesquerella fendleri. Ecology 76: 344–356.Google Scholar
  13. Hairston, N. G., Jr., 1998. Time travelers: What's timely in diapause research? Arch. Hydrobiol. Beih. Ergebn. Limnol. 52: 1–15.Google Scholar
  14. Kleiven, O. T., P. Larsson & A. Hobæk, 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197–206.Google Scholar
  15. Lampert, W., 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology 74: 1455–1466.Google Scholar
  16. Lynch, M., 1984. The limits of life history evolution in Daphnia. Evolution 38: 465–482.Google Scholar
  17. Lynch, M. & H.W. Deng, 1994. Genetic slippage in response to sex. Am. Nat. 144: 242–261.Google Scholar
  18. Lynch, M. & R. Ennis, 1983. Resource availability, maternal effects and longevity. Exp. Geront. 18: 147–165.Google Scholar
  19. Lynch, M., K. Spitze & T. J. Crease, 1989. The distribution of life history variation in the Daphnia pulex complex. Evolution 43: 1724–1736.Google Scholar
  20. Pfrender, M. E. & H.-W. Deng, 1998. Environmental and genetic control of diapause termination in Daphnia. Arch. Hydrobiol. Beih. Ergebn. Limnol. 52: 237–251.Google Scholar
  21. Rossi, V., L. Montesanto & P. Menozzi, 1998. Deposition season and hatching patterns of resting eggs in Mixodiaptomus kupelwieseri (Crustacea: Copepoda). Arch. Hydrobiol. Beih. Ergebn. Limnol. 52: 207–218.Google Scholar
  22. Santer, B. & W. Lampert, 1995. Summer diapause in cyclopoid copepods: adaptive response to a food bottleneck? J. anim. Ecol. 64: 600–613.Google Scholar
  23. Ślusarczyk, M., 1995. Predator-induced diapause in Daphnia. Ecology 76: 1008–1013.Google Scholar
  24. Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd edn. W. H. Freeman and Company, New York.Google Scholar
  25. Spitze, K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135: 367–374.Google Scholar
  26. Stross, R. G. & J. C. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1462–1464.Google Scholar
  27. Tessier, A. J., A. Young & M. Leibold, 1992. Population dynamics and body-size selection in Daphnia. Limnol. Oceanogr. 37: 1–13.Google Scholar
  28. Van Dooren, T. I.M. & L. Brendonck, 1998. The hatching pattern of Brachipodopsis wolfi (Crustacea: Anostraca): phenotypic plasticity, additive genetic and maternal effects. Arch. Hidrobiol. Beih. Ergebn. Limnol. 52: 219–227.Google Scholar
  29. Weber, A. & S. Declerck, 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360: 89–99.Google Scholar
  30. Weider, L. J., W. Lampert, M. Wessels, J. K. Colbourne & P. Limburg, 1997. Long-term genetic shifts in a microcrustacean egg bank associated with anthropogenic changes in the Lake Constance ecosystem. Proc. R. Soc. London B 264: 1613–1618.Google Scholar
  31. Yampolsky, L. Y. & B. A. Kalabushkin, 1991. The components of life-history trait variation in a Daphnia magna population. Hydrobiologia 225: 255–261.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kestutis Arbačiauskas
    • 1
  1. 1.Institute of EcologyVilniusLithuania

Personalised recommendations