Advertisement

Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming

  • R. Caballero
  • E. Cerdá
  • M. M. Muñoz
  • L. Rey
  • I. M. Stancu-Minasian
Article

Abstract

In this work, different concepts of efficient solutions to problems of stochastic multiple-objective programming are analyzed. We center our interest on problems in which some of the objective functions depend on random parameters. The existence of different concepts of efficiency for one single stochastic problem, such as expected-value efficiency, minimum-risk efficiency, etc., raises the question of their quality. Starting from this idea, we establish some relationships between the different concepts. Our study enables us to determine what type of efficient solutions are obtained by each of these concepts.

stochastic multiobjective programming expected-value efficiency minimum-variance efficiency minimum-risk efficiency efficiency in probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goicoechea, A., Hansen, D. R., and Duckstein, L., Multiobjective Decision Analysis with Engineering and Business Applications, John Wiley and Sons, New York, New York, 1982.Google Scholar
  2. 2.
    Stancu-Minasian, I. M., Stochastic Programming with Multiple-Objective Functions, D. Reidel Publishing Company, Dordrecht, Netherlands, 1984.Google Scholar
  3. 3.
    Slowinski, R., and Teghem, J., Editors, Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht, Netherlands, 1990.Google Scholar
  4. 4.
    Teghem, J., Dufrane, D., Thauvoye, M., and Kunsch, P. STRANGE: An Interactive Method for Multiobjective Linear Programming under Uncertainty, European Journal of Operational Research, Vol. 26, pp. 65-82, 1986.Google Scholar
  5. 5.
    Stancu-Minasian, I. M., and Tigan, S., The Vectorial Minimum Risk Problem, Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, pp. 321-328, 1984.Google Scholar
  6. 6.
    Stancu-Minasian, I. M., Stochastic Programming with Multiple Fractile Criteria, Revue Roumaine de Mathématiques Pures et Appliquées, Vol. 37, pp. 939-941, 1992.Google Scholar
  7. 7.
    Urli, B., and Nadeau, R., Stochastic MOLP with Incomplete Information: An Interactive Approach with Recourse, Journal of the Operational Research Society, Vol. 41, pp. 1143-1152, 1990.Google Scholar
  8. 8.
    Ben Abdelaziz, F., Lang, P., and Nadeau, R., Pointwise Efficiency in Multiobjective Stochastic Linear Programming, Journal of the Operational Research Society, Vol. 45, pp. 1324-1334, 1994.Google Scholar
  9. 9.
    Ben Abdelaziz, F., Lang, P., and Nadeau, R., Distributional Efficiency in Multiobjective Linear Programming, European Journal of Operational Research, Vol. 85, pp. 399-415, 1995.Google Scholar
  10. 10.
    Caballero, R., CerdÁ, E., MuÑoz, M. M., and Rey, L., Relations Among Several Efficiency Concepts in Stochastic Multiple-Objective Programming, Research and Practice in Multiple-Criteria Decision Making, Edited by Y. Y. Haimes and R. Steuer, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Germany, Vol. 487, pp. 57-68, 2000.Google Scholar
  11. 11.
    Markowitz, H., Portfolio Selection, Journal of Finance, Vol. 7, pp. 77-91, 1952.Google Scholar
  12. 12.
    White, D. J., Optimality and Efficiency, John Wiley and Sons, New York, NY, 1982.Google Scholar
  13. 13.
    Chankong, V., and Haimes, Y. Y., Multiobjective Decision Making: Theory and Methodology, North-Holland, New York, NY, 1983.Google Scholar
  14. 14.
    Pre´kopa, A., Stochastic Programming, Kluwer Academic Publishers, Dordrecht, Netherlands, 1995.Google Scholar
  15. 15.
    Wets, R. J. B., and Ziemba, W. T., Stochastic Programming: State of the Art, 1998, Annals of Operations Research, Vol. 85, pp. 2-11, 1999.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • R. Caballero
    • 1
  • E. Cerdá
    • 2
  • M. M. Muñoz
    • 1
  • L. Rey
    • 1
  • I. M. Stancu-Minasian
    • 3
  1. 1.Department of Applied Economics (Mathematics)University of MálagaMálagaSpain
  2. 2.Department of Foundations of Economic AnalysisUniversidad Complutense de MadridMadridSpain
  3. 3.Center for Mathematical StatisticsRomanian AcademyBucharestRomania

Personalised recommendations