Journal of Paleolimnology

, Volume 26, Issue 3, pp 283–292 | Cite as

Lacustrine organic matter and the Holocene paleoenvironmental record of Lake Albano (central Italy)

  • D. Ariztegui
  • C. Chondrogianni
  • A. Lami
  • P. Guilizzoni
  • E. Lafargue


A combined bulk and detailed geochemical study of the sedimentary organic matter in Lake Albano, central Italy, provides critical data to track the response of this aquatic system to the environmental changes of variable amplitude that occurred during the Holocene. Rock‐Eval pyrolysis of this predominantly laminated, organic carbon‐rich sedimentary sequence shows changes in hydrogen and oxygen indices that are related to variations in the dominance of the primary producers. These variations are further confirmed by the pigments and the carbon isotopic composition of bulk organic matter showing that cyanobacteria dominated the lake waters during the early and late Holocene whereas diatoms have been the main producers during the middle Holocene. Sharp decreases in productivity, 2–3 centuries long, are identified at ca. 8.2, 6.4 and 3.8 ka. B.P. Changes in temperature and/or effective moisture are suggested as the most probable causes, although human impact cannot be ruled out for the latest part of the Holocene.

Holocene Rock‐Eval Pyrolysis pigments trophic‐state paleolimnology organic carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, R. B., P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor & P. U. Clark, 1997. Holocene climate instability: A prominent, widespread event 8200 yrs ago. Geology 25: 483–486.Google Scholar
  2. Ariztegui, D., 1993. Palaeoenvironmental and palaeoclimatic implications of sedimented organic matter variations in lacustrine systems: Lake St. Moritz, a case study Unpublished PhD Thesis. ETH–Zürich, Switzerland, 188 pp.Google Scholar
  3. Ariztegui, D., P. Farrimond & J. A. McKenzie, 1996. Compositional variations in sedimentary lacustrine organic matter and their implications for high Alpine Holocene environmental changes: Lake St. Moritz, Switzerland. Org. Geochem. 24: 453–461.Google Scholar
  4. Ariztegui, D., A. Assioli, J. J. Lowe, F. Trincardi, L. Vigliotti, F. Tamburini, C. Chondrogianni, C. A. Accorsi, M. Bandini Mazzanti, A. M. Mercuri, S. van der Kaars, J. A. McKenzie & F. Oldfield, 2000. Palaeoclimatic reconstructions and formation of sapropel S1: Inferences from Late Quaternary lacustrine and marine sequences in the Central Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158: 215–240.Google Scholar
  5. Behl, R. J. & J. P. Kennett, 1996. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379: 243–246.Google Scholar
  6. Birks, H. J. B., 1986. Late–Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to North–West Europe. In Berglund, B. E. (ed.), Handbook of Holocene Palaecology and Palaeohydrology, 3–65.Google Scholar
  7. Calanchi, N., E. Dinelli, F. Lucchini and A. Mordenti, 1996. Chemiostratigraphy of late Quaternary sediments from Lake Albano and central Adriatic Sea cores (PALICLAS Project). Memorie Istituto Italiano di Idrobiologia 55: 247–264.Google Scholar
  8. Chondrogianni, C., D. Ariztegui, P. Guilizzoni & A. Lami, 1996a. Lakes Albano and Nemi (central Italy): an overview. Memorie Istituto Italiano di Idrobiologia 55: 17–22.Google Scholar
  9. Chondrogianni, C., D. Ariztegui, F. Niessen, C. Ohlendorf & G. S. Lister, 1996b. Late Pleistocene and Holocene sedimentation in Lake Albano and Lake Nemi (central Italy). Memorie Istituto italiano di Idrobiologia 55: 23–38.Google Scholar
  10. Espitalie, J., J. Deroo & F. Marquis, 1985. Rock–Eval Pyrolysis and its Applications. Institut Français du Pétrole. Report #33578.Google Scholar
  11. Fry, B. & S. C. Wainwright, 1991. Diatom sources of 13C–rich carbon in marine food webs. Marine Ecology Progress Series 76: 149–157.Google Scholar
  12. Ganopolski, A., C. Kubatzki, M. Claussen, V. Brovkin & V. Petoukhov, 1998. The influence of vegetation–atmosphere–ocean interaction on climate during the mid–Holocene. Science 280:1916–1919.Google Scholar
  13. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1982. Basic trophic status and recent development of some Italian lakes as revealed by plant pigments and other chemical components in sediment cores. Memorie Istituto Italiano di Idrobiologia 40: 79–98.Google Scholar
  14. Hoek, W. Z., 2000. Integration of Ice–Core, Marine and Terrestrial Records (INTIMATE): A Core Project of the INQUA Commission on Paleoclimate. PAGES Newsletter 8/2: 21.Google Scholar
  15. Kelts, K., 1997. Aquatic response signatures in lake core sequences as global evidence of rapid moisture balance shifts around 4000 years ago. Terra–Nova 9: 626.Google Scholar
  16. Lamb, H. F., F. Gasse, A. Benkaddour, N. El Hamouti, S. van der Kaars, W. T. Perkins, N. J. Pearce & C. N. Roberts, 1995. Relation between century–scale Holocene arid intervals in tropical and temperate zones. Nature 373: 134–137.Google Scholar
  17. Lami, A., F. Niessen, P. Guillizzoni, J. Masaferro & C. A. Belis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). J. Paleolim. 10: 181–197.Google Scholar
  18. Langford, F. F. & M. M. Blanc–Valleron, 1990. Interpreting Rock–Eval Pyrolisis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bulletin 74: 799–804.Google Scholar
  19. Leemann, A. & F. Niessen, 1994. Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4/3: 259–268.Google Scholar
  20. Magri, D., 1997. Middle and late Holocene vegetation and climate changes in peninsular Italy. In Nüzhet Dalfes, H., G. Kukla & H. Weiss (eds.), Third Millennium BC Climate Change and Old World Collapse, NATO ASI series, I 49. Springer–Verlag, Heidelberg, 517–530.Google Scholar
  21. Manca M., A. M. Nocentini, C. A. Belis, P. Comoli & L. Corbella, 1996. Invertebrate fossil remains as indicators of late Quaternary environmental changes in Latium crater lakes (L. Albano and L. Nemi). Memorie dell'Istituto Italiano di Idrobiologia 55: 149–176.Google Scholar
  22. McGowan, S., G. Britton, E. Haworth & B. Moss, 1999. Ancient blue–green blooms. Limnol. Oceanogr. 44: 436–439.Google Scholar
  23. Meyers, P. & E. Lallier–Vergès, 1999. Lacustrine sedimentary organic matter records of Late Quaternary Paleoclimates. J. Paleolim. 21: 345–372.Google Scholar
  24. Niessen, F. & K. Kelts, 1989. The deglaciation and Holocene sedimentary evolution of southern perialpine Lake Lugano – Implications for Alpine paleoclimate. Ecolog. Geol. Helv. 82: 235–263.Google Scholar
  25. Niessen, F., L. Wick, G. Bonani, C. Chondrogianni & C. Siegenthaler, 1992. Aquatic system response to climatic and human changes: productivity, bottom water oxygen status, and sapropel formation in Lake Lugano after 10,000 years BP. Aquat. Sci. 54: 256– 276.Google Scholar
  26. Pelet, R., 1981. Preservation and alteration of present day organic matter. In Bjoroy, M. (ed.), Advances in Organic Geochemistry. John Wiley & Sons Ltd, 241–250.Google Scholar
  27. Peters, K. E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolisis. AAPG Bull. 70: 318–329.Google Scholar
  28. Ramrath, A., N. R. Nowaczyk & J. F. W. Negendank, 1999. Sedimentological evidence for environmental changes since 34,000 years BP from Lago di Mezzano, central Italy. J. Paleolim. 21: 423–435.Google Scholar
  29. Ritchie, J. C., C. H. Eyles & C. V. Haynes, 1985. Sediment and pollen evidence for an early to mid–Holocene humid period in the eastern Sahara. Nature 314: 352–355.Google Scholar
  30. Roberts, N., 1989. The Holocene: An Environmental History. Blackwell, New York, 277.Google Scholar
  31. Rolph, T. C., F. Oldfield & H. D. van der Post, 1996. Palaeomagnetism and rock–magnetism results from Lake Albano and the central Adriatic Sea (Italy). Memorie Istituto italiano di Idrobiologia 55: 265–283.Google Scholar
  32. Ryves, D. B., V. J. Jones, P. Guilizzoni, A. Lami, A. Marchetto, R. W. Battarbee, R. Bettinetti & E. C. Devoy, 1996. Late Pleistocene and Holocene environmental changes at Lake Albano and Lake Nemi (central Italy) as indicated by algal remains. Memorie Istituto italiano di Idrobiologia 55: 119–148.Google Scholar
  33. Sanger, J. E., 1988. Fossil pigments in palaeoecology and palaeolimnology. Palaeogeogr., Palaeoclim., Palaeoecol. 62: 343–359.Google Scholar
  34. Sirocko, F., D. Garbe–Schoenberg, A. McIntyre & B. Molfino, 1996. Teleconnections between the subtropical monsoons and high–latitude climates during the last deglaciation. Science 272: 526–529.Google Scholar
  35. Shapiro, J., 1990. Current beliefs regarding dominance by bluegreens: The case for the importance of CO2 and pH. Verh. Int. Verein. Theor. Angew. Limnol. 26: 38–54.Google Scholar
  36. Stager, J. C. & P. A. Mayewski, 1997. Abrupt early to mid–Holocene climatic transition registered at the equator and the poles. Science 276: 1834–1836.Google Scholar
  37. Talbot, M. R. & D. A. Livingstone, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeogr., Palaeoclim., Palaeoecol. 70: 121–137.Google Scholar
  38. Tyson, R., 1995. Sedimentary Organic Matter. Chapman & Hall, London, 615.Google Scholar
  39. Valero–Garcés, B. L., M. Grosjean, A. Schwalb, M. Geyh, B. Messerli & K. Kelts, 1996. Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J. Paleolim. 16: 1–21.Google Scholar
  40. Wetzel, R. G., 1970. Recent and postglacial production rates of a marl lake. Limnol. Oceanogr. 15: 491–503.Google Scholar
  41. Wilkes, H., A. Ramrath & J. F. W. Negendank, 1999. Organic geochemical evidence for environmental changes since 34,000 yrs BP from Lago di Mezzano, central Italy. J. Paleolim. 22: 349–365.Google Scholar
  42. Willemse, N. W. & T. E. Törnqvist, 1999. Holocene century–scale temperature variability from West Greenland lake records. Geology 27: 580–584.Google Scholar
  43. Züllig, H., 1985. Pigmente phototropher Bakterien in Seesedimenten und ihre Bedeutung für die Seenforschung. Sch. Z. Hyd. 47: 87–126.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • D. Ariztegui
    • 1
  • C. Chondrogianni
    • 1
  • A. Lami
    • 2
  • P. Guilizzoni
    • 2
  • E. Lafargue
    • 3
  1. 1.Geologisches Institut, ETH ZentrumZürichSwitzerland
  2. 2.Institut ForelUniversity of GenevaGenevaSwitzerland
  3. 3.Institut Français du PétrolRueil-MailmaisonFrance

Personalised recommendations