Foundations of Physics

, Volume 31, Issue 7, pp 1119–1135 | Cite as

Superluminal Motions? A Bird's-Eye View of the Experimental Situation

  • Erasmo Recami


In this article, after a theoretical introduction and a sketch of some related long-standing predictions, a bird's-eye view is presented—with the help of nine figures—of the various experimental sectors of physics in which Superluminal motions seem to appear (thus contributing support to those past predictions). In particular, a panorama is presented of the experiments with evanescent waves and/or tunnelling photons, and with the “localized Superluminal solutions” to the Maxwell equations (like the so-called X-shaped beams). The present review is brief, but is followed by a large enough bibliography to allow the interested reader deepening the preferred topic.


Experimental Sector Interested Reader Present Review Maxwell Equation Experimental Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., O. M. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, Am. J. Phys. 30, 718 (1962).Google Scholar
  2. 2.
    See E. Recami and R. Mignani, Riv. Nuovo Cimento 4, 209–290, E398 (1974), and references therein. Cf. also E. Recami, ed., Tachyons, Monopoles, and Related Topics (North-Holland, Amsterdam, 1978).Google Scholar
  3. 3.
    E. Recami, Riv. Nuovo Cimento 9(6), 1–178 (1986), and references therein.Google Scholar
  4. 4.
    See, e.g., E. Recami, in Annuario '73, Enciclopedia EST, E. Macorini, ed. (Mondadori, Milano, 1973), pp. 85–94; Nuovo Saggiatore 2(3), 20–29 (1986).Google Scholar
  5. 5.
    E. Recami, in I Concetti della Fisica, F. Pollini and G. Tarozzi, eds. (Acc. Naz. Sc. Lett. Arti, Modena, 1993), pp. 125–138. E. Recami and W. A. Rodrigues, “Antiparticles from special relativity,” Found. Physics 12, 709–718 (1982); 13, E533 (1983).Google Scholar
  6. 6.
    E. Recami, Found. Phys. 17, 239–296 (1987). See also Lett. Nuovo Cimento 44, 587-593 (1985); P. Caldirola and E. Recami, in Italian Studies in the Philosophy of Science, M. Dalla Chiara, ed. (Reidel, Boston, 1980), pp. 249–298. A. M. Shaarawi and I. M. Besieris, J. Phys. A: Math. Gen. 33, 7255–7263 (2000).Google Scholar
  7. 7.
    Cf. M. Baldo Ceolin, “Review of neutrino physics,” invited talk at the XXIII Int. Symp. on Multiparticle Dynamics (Aspen, CO, Sept. 1993). E. W. Otten, Nucl. Phys. News 5, 11 (1995). From the theoretical point of view, see, e.g., E. Giannetto, G. D. Maccarrone, R. Mignani, and E. Recami, Phys. Lett. B 178, 115–120 (1986) and references therein. S. Giani, “Experimental evidence of superluminal velocities in astrophysics and proposed experiments,” CP458, in Space Technology and Applications International Forum 1999, M. S. El-Genk, ed. (A.I.P., Melville, 1999), pp. 881–888.Google Scholar
  8. 8.
    See, e.g., J. A. Zensus and T. J. Pearson, eds., Superluminal Radio Sources (University Press, Cambridge, 1987).Google Scholar
  9. 9.
    I. F. Mirabel and L. F. Rodriguez, “A superluminal source in the Galaxy,” Nature 371, 46 (1994) [with an editorial comment, “A galactic speed record,” by G. Gisler, at p. 18 of the same issue]; S. J. Tingay et al., “Relativistic motion in a nearby bright X-ray source,” Nature 374, 141 (1995).Google Scholar
  10. 10.
    M. J. Rees, Nature 211, 46 (1966). A. Cavaliere, P. Morrison, and L. Sartori, Science 173, 525 (1971).Google Scholar
  11. 11.
    E. Recami, A. Castellino, G. D. Maccarrone, and M. Rodonò, “Considerations about the apparent Superluminal expansions observed in astrophysics,” Nuovo Cimento B 93, 119 (1986). Cf. also R. Mignani and E. Recami, Gen. Relat. Grav. 5, 615 (1974).Google Scholar
  12. 12.
    V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992), and references therein, in particular T. E. Hartman, J. Appl. Phys. 33, 3427 (1962). See also V. S. Olkhovsky, E. Recami, F. Raciti, and A. K. Zaichenko, J. de Phys.-I 5, 1351–1365 (1995).Google Scholar
  13. 13.
    See, e.g., Th. Martin and R. Landauer, Phys. Rev. A 45, 2611 (1992). R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, Physica B 175, 257 (1991). A. Ranfagni, D. Mugnai, P. Fabeni, and G. P. Pazzi, Appl. Phys. Lett. 58, 774 (1991); Y. Japha and G. Kurizki, Phys. Rev. A 53, 586 (1996). Cf. also G. Kurizki, A. E. Kozhekin, and A. G. Kofman, Europhys. Lett. 42, 499 (1998). G. Kurizki, A. E. Kozhekin, A. G. Kofman, and M. Blaauboer, paper delivered at the VII Seminar on Quantum Optics, Raubichi, Belarus (May 1998).Google Scholar
  14. 14.
    E. Recami, F. Fontana, and R. Garavaglia, Int. J. Mod. Phys. A 15, 2793 (2000), and references therein.Google Scholar
  15. 15.
    G. Nimtz and A. Enders, J. de Phys.-I 2, 1693 (1992); 3, 1089 (1993); 4, 1379 (1994); Phys. Rev. E 48, 632 (1993). H. M. Brodowsky, W. Heitmann, and G. Nimtz, J. de Phys.-I 4, 565 (1994); Phys. Lett. A 222, 125 (1996); 196, 154 (1994); G. Nimtz and W. Heitmann, Prog. Quant. Electr. 21, 81 (1997).Google Scholar
  16. 16.
    A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993), and references therein; Scient. Am. 269(2), 38 (1993). Cf. also Y. Japha and G. Kurizki, Phys. Rev. A 53, 586 (1996).Google Scholar
  17. 17.
    A. Ranfagni, P. Fabeni, G. P. Pazzi, and D. Mugnai, Phys. Rev. E 48, 1453 (1993). Ch. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, Phys. Rev. Lett. 73, 2308 (1994). Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997). V. Laude and P. Tournois, J. Opt. Soc. Am. B 16, 194 (1999).Google Scholar
  18. 18.
    Scientific American (Aug. 1993); Nature (Oct. 21, 1993); New Scientist (Apr. 1995); Newsweek (19 June 1995).Google Scholar
  19. 19.
    Reference 3, p. 158 and pp. 116–117. Cf. also D. Mugnai, A. Ranfagni, R. Ruggeri, A. Agresti, and E. Recami, Phys. Lett. A 209, 227 (1995).Google Scholar
  20. 20.
    H. M. Brodowsky, W. Heitmann, and G. Nimtz, Phys. Lett. A 222, 125 (1996).Google Scholar
  21. 21.
    A. P. L. Barbero, H. E. Hernández F., and E. Recami, “On the propagation speed of evanescent modes” [LANL Archives #physics/9811001] Phys. Rev. E 62, 8628 (2000), and references therein. See also E. Recami, H. E. Hernández F., and A. P. L. Barbero, Ann. Phys. (Leipzig) 7, 764–773 (1998). A. M. Shaarawi and I. M. Besieris, Phys. Rev. E 62(5), in press (Nov. 2000).Google Scholar
  22. 22.
    G. Nimtz, A. Enders, and H. Spieker, in Waves and Particles in Light and Matter, A. van der Merwe and A. Garuccio, eds. (Plenum, New York, 1993); J. de Phys.-I 4, 565 (1994). See also A. Enders and G. Nimtz, Phys. Rev. B 47, 9605 (1993).Google Scholar
  23. 23.
    V. S. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (Superluminal) effect” [Lanl Archives #quant-ph/0002022], Report INFN/FM_00/20 (Frascati, 2000), submitted for publication. S. Esposito, in preparation. See also A. M. Shaarawi and I. M. Besieris, J. Phys. A: Math. Gen. 33, 8559–8576 (2000).Google Scholar
  24. 24.
    V. S. Olkhovsky, E. Recami, F. Raciti, and A. K. Zaichenko, Ref. 12, p. 1361. See also Refs. 3, 6 and E. Recami, F. Fontana, and R. Garavaglia, Ref. 14, p. 2807.Google Scholar
  25. 25.
    R. Y. Chiao, A. E. Kozhekin A. E., and G. Kurizki, Phys. Rev. Lett. 77, 1254 (1996). C. G. B. Garret and D. E. McCumber, Phys. Rev. A 1, 305 (1970).Google Scholar
  26. 26.
    S. Chu and W. Wong, Phys. Rev. Lett. 48, 738 (1982). M. W. Mitchell and R. Y. Chiao, Phys. Lett. A 230, 133_138 (1997). G. Nimtz, Europ. Phys. J., B (to appear as a Rapid Note). L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000). Further experiments are being developed, e.g., at Glasgow [D. Jaroszynski, private commun.] with X rays.Google Scholar
  27. 27.
    G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B 36, 5 (1976).Google Scholar
  28. 28.
    M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, Phys. Rev. A, in press.Google Scholar
  29. 29.
    H. Bateman, Electrical and Optical Wave Motion (University Press, Cambridge, 1915). R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley, New York, 1966), Vol. 2, p. 760. J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983). R. W. Ziolkowski, J. Math. Phys. 26, 861 (1985). J. Durnin, J. Opt. Soc. 4, 651 (1987). A. O. Barut et al., Phys. Lett. A 143, 349 (1990); Found. Phys. Lett. 3, 303 (1990); Found. Phys. 22, 1267 (1992).Google Scholar
  30. 30.
    J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York, 1941), p. 356. A. O. Barut et al., Phys. Lett. A 180, 5 (1993); 189, 277 (1994).Google Scholar
  31. 31.
    R. Donnelly and R. W. Ziolkowski, Proc. Roy. Soc. London A 440, 541 (1993). I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, J. Math. Phys. 30, 1254 (1989). S. Esposito, Phys. Lett. A 225, 203 (1997). J. Vaz and W. A. Rodrigues, Adv. Appl. Cliff. Alg. S-7, 457 (1997). 1134 RecamiGoogle Scholar
  32. 32.
    See also E. Recami and W. A. Rodrigues Jr., “A model theory for tachyons in two dimen-sions,” in Gravitational Radiation and Relativity, J. Weber and T. M. Karade, eds. (World Scientific, Singapore, 1985), pp. 151–203, and references therein.Google Scholar
  33. 33.
    A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, J. Math. Phys. 31, 2511 (1990), Sec. VI; Nucl Phys. (Proc. Suppl.) B 6, 255 (1989); Phys. Lett. A 188, 218 (1994). See also: V. K. Ignatovich, Found. Phys. 8, 565 (1978) and A. O. Barut, Phys. Lett. A 171, 1 (1992); 189, 277 (1994); Ann. Fond. L. de Broglie, Jan. 1994; and “Quantum theory of single events, Localized de Broglie-wavelets, Schroedinger waves and classical trajectories,” preprint IC/90/99 (ICTP, Trieste, 1990).Google Scholar
  34. 34.
    A. O. Barut, G. D. Maccarrone, and E. Recami, Nuovo Cimento A 71, 509 (1982). P. Caldirola, G. D. Maccarrone, and E. Recami, Lett. Nuovo Cim. 29, 241 (1980). E. Recami and G. D. Maccarrone, Lett. Nuovo Cim. 28, 151 (1980).Google Scholar
  35. 35.
    J.-Y. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).Google Scholar
  36. 36.
    J.-Y. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 441 (1992).Google Scholar
  37. 37.
    E. Recami, Physica A 252, 586 (1998). J.-Y. Lu, J. F. Greenleaf, and E. Recami, “Limited diffraction solutions to Maxwell (and Schroedinger) equations” [Lanl Archives #physics/9610012], Report INFN/FM-96/01 (INFN, Frascati, Oct. 1996). See also R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, J. Opt. Soc. Am., A 10, 75 (1993); J. Phys. A: Math. Gen. 33, 7227–7254 (2000).Google Scholar
  38. 38.
    P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).Google Scholar
  39. 39.
    D. Mugnai, A. Ranfagni, and R. Ruggeri, Phys. Rev. Lett. 84, 4830 (2000).Google Scholar
  40. 40.
    M. Z. Rached, E. Recami, and H. E. Hernández-Figueroa, in preparation. M. Z. Rached, E. Recami, and F. Fontana, “Localized Superluminal solutions to Maxwell equations propagating along a normal-sized waveguide” [Lanl Archives #physics/0001039], submitted for publication. I. M. Besieris, M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, Progress in Electromagnetic Research (PIER) 19, 1–48 (1998).Google Scholar
  41. 41.
    J.-Y. Lu, H.-H. Zou, and J. F. Greenleaf, Ultrasound in Medicine and Biology 20, 403 (1994); Ultrasonic Imaging 15, 134 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Erasmo Recami
    • 1
    • 2
    • 3
  1. 1.Facoltà di IngegneriaUniversità statale di BergamoDalmine (BG)Italy
  2. 2.INFN—Sezione di MilanoMilanItaly
  3. 3.CCS, State University at CampinasCampinas, S.P.Brazil

Personalised recommendations