Journal of Paleolimnology

, Volume 26, Issue 3, pp 241–257 | Cite as

Historical rates of sediment and nutrient accumulation in marshes of the Upper St. Johns River Basin, Florida, U.S.A.

  • Mark Brenner
  • Claire L. Schelske
  • Lawrence W. Keenan


We used 210Pb-dated sediment cores from wetlands and Blue Cypress Lake, in the Upper St. Johns River Basin (USJRB), Florida, USA, to measure historical accumulation rates of bulk sediment, total carbon (C), total nitrogen (N), and total phosphorus (P). Marsh cores displayed similar stratigraphies with respect to physical properties and nutrient content. Wetland sediments typically contained > 900 mg organic matter (OM) g–1 dry mass, > 500 mg C g–1, and 30–40 mg N g–1. OM, C, and N concentrations were slightly lower in uppermost sediments of most cores, but displayed no strong stratigraphic trends. Total P concentrations were relatively low in bottommost deposits (0.01–0.11 mg g–1), but ranged from 0.38–2.67 mg g–1 in surface sediments. The mean sediment accretion rate in the marsh since ~ 1900, 0.33 ± 0.05 cm yr–1, was calculated from ten 210Pb-dated cores. All sites displayed increases in accumulation rates of bulk sediment, C, N, and P since the early part of the 20th century. These trends are attributed to recent hydrologic modifications in the basin combined with high nutrient loading from agricultural, residential, and urban sources.

accumulation rates Florida 210Pb dating nutrients paleolimnology sediment wetlands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead–210 dates assuming a constant rate of supply of unsupported lead–210 to the sediment. Catena 5: 1–8.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.Google Scholar
  3. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27.Google Scholar
  4. Bartow, S. M., C. B. Craft & C. J. Richardson, 1996. Reconstructing historical changes in Everglades plant community composition using pollen distributions in peat. Lake Reserv. Manage. 12: 313–322.Google Scholar
  5. Binford, M. W., 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J. Paleolim. 3: 253–267.Google Scholar
  6. Binford, M. W. & M. Brenner, 1986. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment–water interactions. Limnol. Oceanogr. 31: 584–595.Google Scholar
  7. Binford, M. W. & M. Brenner, 1988. Reply to comment by Benoit and Hemond. Limnol. Oceanogr. 33: 304–310.Google Scholar
  8. Binford, M. W., M. Brenner & D. R. Engstrom, 1992. Temporal sedimentation patterns in the nearshore littoral of Lago Huiñaimarca. In: Dejoux, C. & A. Iltis (eds), Lake Titicaca, a Synthesis of Limnological Knowledge. Kluwer Academic Publishers, Norwell, MA, 29–39.Google Scholar
  9. Brenner, M. & M. W. Binford, 1988. Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. Aquat. Sci. 45: 294–300.Google Scholar
  10. Brenner, M., A. J. Peplow & C. L. Schelske, 1994. Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol. Oceanogr. 39: 1222–1227.Google Scholar
  11. Brenner, M., T. J. Whitmore, J. H. Curtis & C. L. Schelske, 1995. Historical ecology of a hypereutrophic Florida lake. Lake Reserv. Manage. 11: 255–271.Google Scholar
  12. Brenner, M., T. J. Whitmore & C. L. Schelske, 1996. Paleolimnological evaluation of historical trophic state conditions in hypereutrophic Lake Thonotosassa, Florida, USA. Hydrobiologia 331: 143–152.Google Scholar
  13. Brenner, M., C. L. Schelske & T. J. Whitmore, 1997. Radium–226 stratigraphy in Florida lake sediments as an indicator of human disturbance. Verh. Internat. Verein. Limnol. 26: 809–813.Google Scholar
  14. Brenner, M., L. Keenan, S. J. Miller & C. L. Schelske, 1999. Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the upper St. Johns River Basin, Florida. Wetlands Ecol. Manage. 6: 221–240.Google Scholar
  15. Brenner, M., J. S. Smoak, M. S. Allen, C. L. Schelske & D. A. Leeper, 2000. Biological accumulation of 226Ra in a groundwater–augmented Florida lake. Limnol. Oceanogr. 45: 710–715.Google Scholar
  16. Brezonik, P. L. & D. R. Engstrom, 1998. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. J. Paleolim. 20: 31–46.Google Scholar
  17. Carignan, R. & R. J. Flett, 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.Google Scholar
  18. Craft, C. B. & C. J. Richardson, 1993a. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22: 133–156.Google Scholar
  19. Craft, C. B. & C. J. Richardson, 1993b. Peat accretion and N, P, and organic C accumulation in nutrient–enriched and unenriched Everglades peatlands. Ecol. Appl. 3: 446–458.Google Scholar
  20. Craft, C. B. & C. J. Richardson, 1998. Recent and long–term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci. Soc. Am. J. 62: 834–843.Google Scholar
  21. Davis, R. B., C. T. Hess, S. A. Norton, D. W. Hanson, K. D. Hoagland & D. S. Anderson, 1984. 137Cs and 210Pb dating of sediments from soft–water lakes in New England (U.S.A.) and Scandinavia, a failure of 137Cs dating. Chem. Geol. 44: 151–185.Google Scholar
  22. Delaune, R. D., W. H. Patrick Jr. & R. J. Buresh, 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275: 532–533.Google Scholar
  23. Fisher, M. M., M. Brenner & K. R. Reddy, 1992. A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J. Paleolim. 7: 157–161.Google Scholar
  24. Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer–Verlag, NY.Google Scholar
  25. Hall, G. B., 1987. Establishment of minimum surface requirements for the greater Lake Washington basin. St. Johns River Water Management District Technical Pub. SJ 87–3, Palatka, FL, 74 pp.Google Scholar
  26. Krishnaswami, S. & D. Lal, 1978. Radionuclide limnochronology. In Lerman, A. (ed), Lakes: Chemistry, Geology, Physics. Springer–Verlag, New York, 153–177.Google Scholar
  27. Nozaki, Y., D. J. DeMaster, D. M. Lewis & K. K. Turekian, 1978. Atmospheric Pb–210 fluxes determined from soil profiles. J. Geophys. Res. 83: 4047–4051.Google Scholar
  28. Oldfield, F. & P. G. Appleby, 1985. Empirical testing of 210Pb–dating models for lake sediments. In Haworth, E. Y. & J. W. G. Lund (eds), Lake Sediments and Environmental History. U. Minnesota Press, Minneapolis, 93–124.Google Scholar
  29. Oldfield, F., P. G. Appleby, R. S. Cambray, J. D. Eakins, K. E. Barber, R. W. Battarbee, G. R. Pearson & J. M. Williams, 1979. 210Pb, 137Cs, and 239Pu profiles in ombrotrophic peat. Oikos 33: 40–45.Google Scholar
  30. Reddy, K. R., R. D. DeLaune, W. F. DeBusk & M. S. Koch, 1993. Long–term nutrient accumulation rates in the Everglades. Soil Sci. Soc. Am. J. 57: 1147–1155.Google Scholar
  31. Rood, B. E., J. F. Gottgens, J. J. Delfino, C. D. Earle & T. L. Crisman, 1995. Mercury accumulation trends in Florida Everglades and savannahs marsh flooded soils. Water Air Soil Pollut. 80: 981–990.Google Scholar
  32. Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry & C. D. Campbell, 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143: 79–86.Google Scholar
  33. Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Lowbackground gamma counting: applications for 210Pb dating of sediments. J. Paleolim. 10: 115–128.Google Scholar
  34. Sincock, J. L., 1958. Waterfowl ecology in the St. Johns River Valley as related to proposed conservation areas and changes in the hydrology from Lake Harney to Ft. Pierce, Florida. Florida Game and Fresh Water Fish Commission Pittman–Robertson Project Report W–19–R, Tallahassee, FL, 89 pp.Google Scholar
  35. SJRWMD (St. Johns River Water Management District), 1980. Upper St. Johns River basin surface water management plan, volume 2. St. Johns River Water Management District, Palatka, FL, 500 pp.Google Scholar
  36. Whitmore, T. J., M. Brenner & C. L. Schelske, 1996. Highly variable sediment distribution in shallow, wind–stressed lakes: a case for sediment–mapping surveys in paleolimnological studies. J. Paleolim. 15: 207–221.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mark Brenner
    • 1
  • Claire L. Schelske
    • 2
  • Lawrence W. Keenan
    • 3
  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleUSA
  3. 3.St. Johns River Water Management DistrictPalatkaUSA

Personalised recommendations