, Volume 444, Issue 1–3, pp 227–235 | Cite as

Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore

  • P. A. Todd
  • P. G. Sanderson
  • L. M. Chou


A photographic technique was used to examine morphological differences in the living polyps of Favia speciosa sampled from three sites around Singapore. Eight characters were measured, seven of which differed significantly between the three study sites. Sedimentation rates and character size were much higher at the site closest to the mainland than at the two sites further from shore. Land reclamation and dredging contribute to high sediment rates in Singapore waters; these rates decrease with increasing distance from shore. Large polyps close to the main island of Singapore are possibly a plastic, or selected for, response to high levels of sediment.

coral morphology intraspecific variation sedimentation photographic technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Salam, H. A. & J. W. Porter, 1988. Physiological effects of sediment rejection on photosynthesis and respiration in three Caribbean reef corals. Proceedings of the Sixth International Coral Reef Symposium 2: 285–292.Google Scholar
  2. Amaral, F. D., 1994. Morphological variation in the reef building coral Montastrea cavernosa in Brazil. Coral Reefs 13: 113–117.Google Scholar
  3. Bak, R. P. M. & J. H. B.W. Elgershuizen, 1976. Patterns of oilsediment rejection in corals. Mar. Biol. 37: 105–113.Google Scholar
  4. Bak, R. P. M. & M. S. Engel, 1979. Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in parent coral community. Mar. Biol. 54: 341–352.Google Scholar
  5. Beltran-Torres, A. U. & J. P. Carricart-Gavinet, 1993. Skeletal morphologic variation in Montastrea cavernosa (Cnidaria: Scleractinia) at Isla Verde Coral Reef, Veracruz, Mexico. Rev. Biol. Trop. 41: 559–562.Google Scholar
  6. Birkeland, C., 1977. The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proceedings of the Third International Coral Reef Symposium, 1: 15–22.Google Scholar
  7. Bosscher, H. & E. H. Meesters, 1992. Depth related changes in the growth rate of Montastrea annularis. Proceedings of the Seventh International Coral Reef Symposium 1: 507–512.Google Scholar
  8. Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Gen. 13: 115–155.Google Scholar
  9. Brown, B. E., M. D. A. LeTissier, T. P. Scoffin & A. W. Tudhope, 1990. Evaluation of the environmental impact of dredging on intertidal coral reefs at Ko Phuket, Thailand, using ecological and physiological parameters. Mar. Ecol. Prog. Ser. 65: 273–281.Google Scholar
  10. Bruno, J. F. & P. J. Edmunds, 1997. Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78: 2177–2190.Google Scholar
  11. Chansang, H., N. Phongsuwan & P. Boonyanate, 1992. Growth of corals under effect of sedimentation along the Northwest coast of Phuket Island, Thailand. Proceedings of the Seventh International Coral Reef Symposium 2: 241–245.Google Scholar
  12. Chappell, J., 1980. Coral morphology, diversity and reef growth. Nature 286: 249–252.Google Scholar
  13. Chou, L. M., 1988. Community structure of sediment stressed reefs in Singapore. Galaxea 7: 101–111.Google Scholar
  14. Chou, L. M., 1996. Response of Singapore reefs to land reclamation. Galaxea 13: 85–92.Google Scholar
  15. Dodge, R. E., 1982. Effects of drilling mud on the reef-building coral Montastrea annularis. Mar. Biol. 71: 141–147.Google Scholar
  16. Dodge, R. E. & J. R. Vaisnys, 1977. Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. J. mar. Res. 35: 715–730.Google Scholar
  17. Dustan, P., 1975. Growth and form in the reef-building coral Montastrea annularis. Mar. Biol. 33: 101–107.Google Scholar
  18. Foster, A. B., 1977. Patterns of small-scale variation of skeletal morphology within the scleractinian corals, Montastrea annularis and Siderastrea siderea. Proceedings of the Third International Coral Reef Symposium 2: 409–415.Google Scholar
  19. Foster, A. B., 1979. Phenotypic plasticity in the reef corals Montastrea annularis and Siderastrea siderea. J. exp. mar. Biol. Ecol. 39: 25–54.Google Scholar
  20. Goh, N. K. C. & L. M. Chou, 1992. A comparison of benthic life-form characteristics of a reef (Cyrene) nearest to and a reef (Raffles Lighthouse) furthest from mainland Singapore. Third ASEAN Science and Technology Week Conference Proceedings 6: 55–62.Google Scholar
  21. Graus, R. R. & I. G. Macintyre, 1982. Variation in the growth forms of the reef coral Montastrea annularis (Ellis and Solander): a quantitative examination of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464.Google Scholar
  22. Grigg, R.G. & S. J. Dollar, 1990. Natural and anthropogenic disturbance on coral reefs. In Dubinski, Z. (ed.), Ecosystems of the World, 25: Coral Reefs, Elsevier: 439–452.Google Scholar
  23. Hodgson, G., 1993. Sedimentation damage to reef corals. In Ginsberg, R. S. (ed.), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Heath, Hazards and History: 298–303.Google Scholar
  24. Hubbard, J. A. E. B. & Y. P. Pocock, 1972. Sediment rejection by recent scleractinian corals: a key to paleoenvironmental reconstruction. Geol. Rundschau. 61: 598–626.Google Scholar
  25. Lasker, H. R., 1976. Intraspecific variability of zooplankton feeding in the hermatypic coral Montastrea cavernosa. In Mackie, G. O. (ed.), Coelenterate Ecology and Behaviour. Plenum Press, New York: 101–109.Google Scholar
  26. Lasker, H. R., 1980. Sediment rejection by coral reefs: the roles of behaviour and morphology of Montastrea cavernosa. J. exp. mar. Biol. Ecol. 47: 77–87.Google Scholar
  27. Lasker, H. R., 1981. Phenotypic variation in the coral Montastrea cavernosa and its effects on colony energetics. Biol. Bull. 160: 292–302.Google Scholar
  28. Low, J. K. Y. & L. M. Chou, 1994. Sedimentation rates in Singapore waters. Proceedings of the Third ASEAN-Australian Symposium on Living Coral Resources 2: 697–701.Google Scholar
  29. Loya, Y., 1976. Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bull. mar. Sci. 26: 450–466.Google Scholar
  30. Marshall, S. M. & A. P. Orr, 1931. Sedimentation on Low Isles reefs and its relation to coral growth. Sci. Rept. Great Barrier Reef Expedition 1: 93–132.Google Scholar
  31. McClanahan, T. R. & D. Obura, 1997. Sedimentation effects on shallow coral reef communities in Kenya. J. exp. mar. Biol. Ecol. 209: 103–122.Google Scholar
  32. Miller, K. J., 1994. Morphological variation in the coral genus Platygyra: environmental influences and taxonomic implications. Mar. Ecol. Prog. Ser. 110: 19–28.Google Scholar
  33. Nagelkerken, I. & R. P. M. Bak, 1998. Differential regeneration of artificial lesions among sympatric morphs of the Caribbean corals Porites astreoides and Stephanocoenia michelinii. Mar. Ecol. Prog. Ser. 163: 279–283.Google Scholar
  34. Riegl, B., 1995. Effects of sand deposition on scleractinian and alcyonacean corals. Mar. Biol. 121: 517–526.Google Scholar
  35. Riegl, B. & G. M. Branch, 1995. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. J. exp. mar. Biol. Ecol. 186: 259–275Google Scholar
  36. Riegl, B. C. Heine & G.M. Branch, 1996. Function of funnel-shaped coral growth in a high-sedimentation environment. Mar. Ecol. Prog. Ser. 145: 87–93.Google Scholar
  37. Rogers, C. S., 1983. Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Mar. poll. Bull. 14: 378–382.Google Scholar
  38. Rogers, C. S., 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62: 185–202.Google Scholar
  39. Shaw, P. J. A., 1998. Morphometric analysis of mixed Dactylorhiza colonies (Orchidaceae) on industrial waste sites in England. J. linn. Soc. Bot. 128: 385–401.Google Scholar
  40. Stafford-Smith, M. G., 1993. sediment rejection efficiency of 22 species of Australian scleractinian corals. Mar. Biol. 115: 229–243.Google Scholar
  41. Stafford-Smith, M. G. & R. F. G. Ormond, 1992. Sediment rejection mechanisms of 42 species of Australian scleractinian corals. Aust. J. mar. Freshwat. Res. 43: 683–705.Google Scholar
  42. Telesnicki, G. J. & W. M. Goldberg, 1995. Effects of turbidity on the photosynthesis and respiration of two South Florida reef coral species. Bull. mar. Sci. 57: 527–539.Google Scholar
  43. Thorpe, R. S., 1976. Biometric analysis of geographical variation and racial affinities. Biol. Rev. 51: 407–452.Google Scholar
  44. Veron, J. E. N., 1995. Corals in Space and Time. UNSW Press, Sydney. 321 pp.Google Scholar
  45. Vosberg, F., 1977. The response to drag of the reef coral Acropora reticulata. Proceedings of the Third International Coral Reef Symposium: 87–93.Google Scholar
  46. Weil, E., 1992. Genetic and morphological variation in Caribbean and Eastern Pacific Porites (Anthozoa, Scleractinia). Preliminary results. Proceedings of the Seventh International Coral Reef Symposium 2: 643–655.Google Scholar
  47. West, J.M., C. D. Harvell & A. M. Walls, 1993. Morphological plasticity in a gorgonian coral (Briareum asbestinum) over a depth cline. Mar. Ecol. Prog. Ser. 94: 61–69.Google Scholar
  48. Wijsma-Best, M., 1974. Habitat-induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proceedings of the Second International Coral Reef Symposium 2: 217–228.Google Scholar
  49. Willis, B. L., 1985. Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proceedings of the Fifth International Coral Reef Symposium 4: 107–112.Google Scholar
  50. Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, Inc., New Jersey. 663 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. A. Todd
    • 1
  • P. G. Sanderson
    • 2
  • L. M. Chou
    • 3
  1. 1.Department of GeographyNational University of SingaporeKent RidgeSingapore
  2. 2.Department Environmental Studies and GeographyUniversity of Notre Dame, AustraliaWestern Australia
  3. 3.Department of Biological SciencesNational University of SingaporeSingapore

Personalised recommendations