Advertisement

Wireless Personal Communications

, Volume 18, Issue 3, pp 289–317 | Cite as

Formulation and Computationally Efficient Algorithms for an Interference-Oriented Version of the Frequency Assignment Problem

  • S. Kotrotsos
  • G. Kotsakis
  • P. Demestichas
  • E. Tzifa
  • V. Demesticha
  • M. Anagnostou
Article

Abstract

The frequency assignment problem will maintain its importance for several years, since future versions of legacy cellular systems, e.g., those of GSM, will continue to exist. This paper elaborates on an interference-oriented version of the frequency assignment problem. The objective function is associated with the interference levels that are imposed by the frequency allocation, while the constraints are related to the allocation of the frequencies required in each cell and the prevention of some unacceptable interference situations. The problem is formally stated, mathematically formulated and solved by means of computationally efficient heuristics. Finally, results are obtained and concluding remarks are made.

GSM FDMA/TDMA co-channel and adjacent channel interference frequency assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications, published by the authors, Palaiseau, France, 1992.Google Scholar
  2. 2.
    S.M. Redl, M.K. Weber and M.W. Oliphant, An Introduction to GSM, Artech House Inc., 1995.Google Scholar
  3. 3.
    J. Cai and D.J. Goodman, “General Packet Radio Service in GSM”, IEEE Commun. Mag., Vol. 35 No. 10 1997.Google Scholar
  4. 4.
    H. Granbohm and J. Wiklund, “GPRS — General Packet Radio Service”, Ericsson Review, No. 1 1999.Google Scholar
  5. 5.
    A. Furuskar, J. Naslund and H. Olofsson, “Edge — Enhanced Data Rates for GSM and TDMA/136 Evolution”, Ericsson Review, No. 1 1999.Google Scholar
  6. 6.
    J. Rapeli, “UMTS: Targets, System Concept, and Standardisation in a Global Framework”, IEEE Personal Commun., Vol. 2 No. 1 pp. 20–28 1995.CrossRefGoogle Scholar
  7. 7.
    E. Buitenwerf, G. Colombo, H. Mitts and P. Wright, “UMTS: Fixed Network Issues and Design Options”, IEEE Personal Commun., Vol. 2 No. 1 pp. 30–37 1995.CrossRefGoogle Scholar
  8. 8.
    “Third Generation Mobile Systems in Europe”, Special issue on IEEE Personal Commun., Vol. 5 No. 2 1998.Google Scholar
  9. 9.
    “IMT-2000: Standards effort of the ITU”, Special issue on IEEE Personal Commun., Vol. 4 No. 4 1997.Google Scholar
  10. 10.
    European Telecommunications Standards Institute (ETSI), “Broadband Radio Access Networks (BRAN); Requirements and Architectures for Broadband Fixed Radio Access Networks (HIPERACCESS)”, Technical Report 101 177 V.1.1.1 1998.Google Scholar
  11. 11.
    W.C.Y. Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1989.Google Scholar
  12. 12.
    G. Calhoun, Digital Cellular Radio, Artech House Inc., 1988.Google Scholar
  13. 13.
    S. Tekinay and B. Jabbari, “Handover and Channel Assignment in Mobile Cellular Networks”, IEEE Commun. Mag., 1991.Google Scholar
  14. 14.
    I. Katzela and Naghshineh, “Channel Assignment Schemes for Cellular Mobile Telecommunications Systems: A Comprehensive Study”, IEEE Personal Commun., Vol. 3 No. 3 pp. 10–31 1996.CrossRefGoogle Scholar
  15. 15.
    F.D. Priscoli, N.P. Magnani, V. Palestini and F. Sestini, “Application of Dynamic Channel Allocation Strategies to the GSM Cellular Network”, IEEE J. Selec. Areas Commun., Vol. 15 No. 8 1997.Google Scholar
  16. 16.
    R. Beck and H. Panzer, “Strategies for Handover and Dynamic Channel Allocation in Microcellular Mobile Radio Systems”, in Proc. Veh. Technol. Conf. 89 (VTC'89), San Francisco, CA, 1989.Google Scholar
  17. 17.
    W.K. Hale, “Frequency Assignment: Theory and Applications”, Proc. IEEE, Vol. 68 1980.Google Scholar
  18. 18.
    C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, Inc., 1982.Google Scholar
  19. 19.
    M.R. Carrey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman: San Francisco, 1979.Google Scholar
  20. 20.
    E. Aarts and J. Korts, Simulated Annealing and the Boltzmann Machines, Wiley: New York, 1989.Google Scholar
  21. 21.
    P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, Kluwer Academic Publisher, Dordrecht, 1988.Google Scholar
  22. 22.
    D.E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley: Reading, Massachusetts, 1989.Google Scholar
  23. 23.
    L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold: New York, 1991.Google Scholar
  24. 24.
    R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, J. Wiley & Sons: New York, 1997.Google Scholar
  25. 25.
    Z. Michalewicz, Generic Algorithms + Data Structures = Evolution Programs, Springer-Verlag: Berlin, 1995.Google Scholar
  26. 26.
    Q. Hao, B.-H. Soong, E. Gunawan, J.-T. Ong, C.-B. Soh and Z. Li, “A Low-Cost Cellular Mobile Communication System: A Hierarchical Optimization Network Resource Planning Approach”, IEEE J. Selec. Areas Commun., Vol. 15 No. 7 1997.Google Scholar
  27. 27.
    T.-P. Wang, S.-Y. Hwang and C.-C. Tseng, “Registration Area Planning for PCS Networks Using Genetic Algorithms”, IEEE Trans. Veh. Technol., Vol. 47 1998.Google Scholar
  28. 28.
    T. Abe, K. Yozi, M. Sengoku, S. Tamura and S. Shinoda, “Graph Theoretical Considerations of Channel Offsets Systems in a Cellular Mobile System”, IEEE Trans. Veh. Technol., Vol. 40 1991.Google Scholar
  29. 29.
    K.N. Sivarajian, R.J. McEliece and J.W. Ketchum, “Channel Assignment in Cellular Radio”, Proc. IEEE Trans. Veh. Technol., 1989.Google Scholar
  30. 30.
    F. Box, “A Heuristic Technique for Assigning Frequencies to Mobile Radio Networks”, IEEE Trans. Veh. Technol., Vol. 27 1978.Google Scholar
  31. 31.
    A. Gamst, “Homogeneous Distribution of Frequencies in a Regular Hexagonal Cell System”, IEEE Trans. Veh. Technol., Vol. 31 1982.Google Scholar
  32. 32.
    A. Gamst, “Some Lower Bounds for a Class of Frequency Assignment Problems”, IEEE Trans. Veh. Technol., Vol. 35 1982.Google Scholar
  33. 33.
    A. Gamst and K. Ralf, “Computational Complexity of Some Interference Graph Calculations”, IEEE Trans. Veh. Technol., Vol. 39 1990.Google Scholar
  34. 34.
    M. Zhang and T.P. Yum, “The Non-Uniform Compact Pattern Allocation Algorithm for Cellular Mobile Systems”, IEEE Trans. Veh. Technol., Vol. 40 1991.Google Scholar
  35. 35.
    D. Kunz, “Channel Assignment for Cellular Networks Using Neural Networks”, IEEE Trans. Veh. Technol., Vol. 40 1991.Google Scholar
  36. 36.
    M. Duque-Anton, D. Kunz and B. Ruber, “Channel Assignment for Cellular Radio Using Simulated Annealing”, IEEE Trans. Veh. Technol., Vol. 42 1993.Google Scholar
  37. 37.
    R. Mathar and J. Mattfeldt, “Channel Assignment in Cellular Radio Networks”, IEEE Trans. Veh. Technol., Vol. 42 1993.Google Scholar
  38. 38.
    ComOpt AB corporation (Cell Planning Accelerators), “CellOpt Automatic Frequency Planning Tool”, www.comopt.com.Google Scholar
  39. 39.
    CSELT (Centro Studi e Laboratori Telecommunicazioni) SPA, “TIMPLAN”, www.cselt.it/products/prools.htm.Google Scholar
  40. 40.
    S. Elmohamed, P. Coddigton and G. Fox, “A Comparison of Annealing Techniques for Academic Course Scheduling”, in E.K. Burke and M.W. Carter (eds.), The Practice and Theory of Automated Timetabling, Springer-Verlag, Lecture Notes in Computer Science, (ISSN 0302–9743/ISBN 3–540–64979–4); also available at www.npac.syr.edu/users/paulc/patat97/paper.html.Google Scholar
  41. 41.
    S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimisation by Simulated Annealing”, Science, Vol. 220 pp. 671–680 1983.Google Scholar
  42. 42.
    S. Kirkpatrick, “Optimisation by Simulated Annealing: Quantitative Studies”, J. Stat. Physics, Vol. 34 pp. 257–262 1984.Google Scholar
  43. 43.
    P.P. Demestichas, E.C. Tzifa and M.E. Anagnostou, “Traffic Adaptive Aggregate Channel Allocation for Future Cellular Communication Systems”, International Journal of Communication Systems, Vol. 11 pp. 337–349 1998.CrossRefGoogle Scholar
  44. 44.
    E.C. Tzifa, P.P. Demestichas, M.D. Louta, E.S. Tsouka, M.E. Theologou and M.E. Anagnostou, “Adaptive Radio Spectrum Allocation Through Mid-Term Reconfigurations for Cellular Communications Systems”, Computer Communications Journal, Vol. 22 pp. 361–375 1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. Kotrotsos
    • 1
  • G. Kotsakis
    • 1
  • P. Demestichas
    • 1
  • E. Tzifa
    • 1
  • V. Demesticha
    • 1
  • M. Anagnostou
    • 1
  1. 1.Computer Science DivisionNational Technical University of AthensAthensGreece

Personalised recommendations