Plant Ecology

, Volume 153, Issue 1–2, pp 293–300

Canopy surface topography in a French Guiana forest and the folded forest theory

  • P. Birnbaum


The canopy surface is an undulating surface that follows the irregular contours of the upper tree crowns and defines the inner and the outer limits of the forest volume. In French Guiana, the height of the canopy surface was surveyed in both a primary and a 20-years old clear-felled secondary forest plot. The topographic surface was displayed in a three-dimensional mesh, where X and Y are horizontal co-ordinates, and Z is the canopy height measured from the ground with an optical telemeter. The statistical dispersion of Z-data, and the spatial tree height variations, are interpreted at different levels of ecosystem organisation, from forest type (primary or secondary forest) to the trees themselves, following the folded forest model theory (Oldeman 1992, 1994). The vertical growth of trees creates a convex pattern in the relief of canopy surface, whereas gaps make ‘concavities’ which delimit impact of perturbation on the forest structure. These events are either the result of the dynamic of single trees (emergent and decayed trees), or arise from the dynamic of a group of trees working together (group of emergent trees or complex gaps). At the plot scale, the elementary events, convexities and concavities, are gathered on similar topo-sequences, and form canopy units either higher or lower than the average canopy height. This study suggests that the topography of the canopy surface is defined by a complex nested system from trees, to groups of trees, to canopy units, within a delimited floristic and physical environment.

Canopy model Eco-unit Forest dynamic Fractal Tree height Tropical forest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubréville, A. 1938. La forê t coloniale: les forê ts d'Afrique occidentale franç aise. Ann. Acad. Sci. Col. 9: 1–245.Google Scholar
  2. Basnet, K. 1992. Effect of topography on the pattern of trees in Tabonuco (Dacryodes excelsa) dominated rain forest of Puerto Rico. Biotropica 24: 31–42.Google Scholar
  3. Benoist, R. 1924. La végétation de la Guyane franç aise. Bull. Soc. Bot. France 71: 1169–1177.Google Scholar
  4. Birnbaum, P. 1995. Histoire de l'invasion d'une plante introduite, Miconia calvescens, dans une î le polynésienne, Tahiti. J. d'Agr. Trad. Bot. Appl. 26: 283–295.Google Scholar
  5. Birnbaum, P. 1997. Modalités d'occupation de l'espace par les arbres en forê t guyanaise. Unpublished PhD thesis, Université Pierre et Marie Curie (Paris VI), Paris.Google Scholar
  6. Blanc, P. 1992. Comment poussent les couronnes d'arbres dans la canopée ? Pp. 155–172. In: Hallé, F. & O. Pascal (eds), Biologie d'une canopée de forê t équatoriale. II. Fondation ELF.Google Scholar
  7. Brokaw, N.V.L. 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14: 158–160.Google Scholar
  8. Brown, S. & Lugo, A. E. 1990. Tropical secondary forests. J. Trop. Ecol. 6: 1–32.Google Scholar
  9. Campbell, D. G., Daly, D. C., Prance, G. T. & Maciel, U. N. 1986. Quantitative ecological inventory of Terra firme and Varzea tropical forest on the Rio Xingu, Brazilian amazon. Brittonia 38: 369–393.Google Scholar
  10. Davis, T. A.W. & Richards, P.W. 1933. The vegetation of the Moraballi creek, British Guiana: an ecological study of a limited area of tropical rain forest. Part I. J. Ecol. 21: 350–384.Google Scholar
  11. Duivenvoorden, J. F. 1996. Patterns of tree species richness in rain forests of the middle Caqueta area, Colombia, NW Amazonia. Biotropica 28: 142–158.Google Scholar
  12. Granville de, J.-J. 1994. Les formations végétales primaires de la zone intérieure de Guyane. In: Raymond, H. L. (ed.), Forê t guyanaise. Gestion de l'écosystè me forestier et aménagement de l'espace régional. Actes du II è me Congrè s Régional de l'Environnement, Cayenne. Nature guyanaise, Sepanguy/CCEE. 21–40.Google Scholar
  13. Guillaumet, J.-L. 1987. Some structural and floristic aspects of the forest. Experientia, 43: 241–251.Google Scholar
  14. Hallé, F., Oldeman, R. A. A. & Tomlinson, P. B. 1978. Tropical trees and forest, an architectural analysis. Springer-Verlag, Berlin.Google Scholar
  15. Kahn, F. & Granville de, J.-J. 1992. Palms in forest ecosystems of Amazonia. Springer-Verlag, Ecological studies, Berlin, p. 95.Google Scholar
  16. Oldeman, R. A. A. 1978. Architecture and energy exchange of dicotyledonous trees in the forest. Pp. 535–560. In: Tomlinson, P. B. & Zimmermann, M. H. (eds), Tropical trees as living systems. Proceedings of the 4th Cabot symposium, Petershaw. Cambridge University Press, Cambridge.Google Scholar
  17. Oldeman, R. A. A. 1983. Tropical rain forest, architecture, silvigenesis and diversity. Pp. 139–150. In: Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds), Tropical rain forest: ecology and management. Blackwell Science, Oxford.Google Scholar
  18. Oldeman, R. A. A. 1992. Architectural models, fractals and agroforestry design. Agric. Ecosys. Env. 41: 179–188.Google Scholar
  19. Oldeman, R. A. A. 1994. Sur les ecosystè mes forestiers: quatre principes sylvologiques. L'Italia Forestale e Montana 49: 1–16.Google Scholar
  20. Parker, G. G., Smith, A. P. & Hogan, K. P. 1992. Access to the upper forest canopy with a large tower crane. Sampling the treetops in three dimension. Bioscience 42: 664–670.Google Scholar
  21. Pascal, J.-P. 1995. Quelques exemples de problè mes posés à l'analyse et au modélisateur par la complexité de la forê t tropicale humide. Revue d'Ecologie (La Terre et la Vie) 50: 237–249.Google Scholar
  22. Prévost, M. F. & Sabatier, D. 1996. Variations spatiales de la richesse et de la diversité du peuplement arboré en forê t guyanaise. Pp. 263–275. In: Guillaumet, J.-L., Belin, M. & Puig, H. (eds), Phytogéographie tropicale. Réalités et perspectives. Colloque de Phytogéographie tropicale, réalités et perspectives, Paris.Google Scholar
  23. Puig, H. & Lescure, J.-P. 1981. Etude de la variabilité floristique dans la région de la piste de St Elie. Bull. ECEREX 3: 25–29.Google Scholar
  24. Richards, P. W. 1952. The tropical rain forest: an ecological study. Cambridge University Press, Cambridge.Google Scholar
  25. Riera, B. 1994. Dynamique de la forê t guyanaise. Pp. 105–110. In: Raymond, H. L. (ed.), Forê t guyanaise. Gestion de l'écosystè me forestier et aménagement de l'espace régional. Actes du II è me Congrè s Régional de l'Environnement, Cayenne. Nature guyanaise, Sepanguy/CCEE.Google Scholar
  26. Rollet, B. 1974. L'architecture des forê ts denses humides sempervirentes de plaine. C.T.F.T., Nogent sur Marne.Google Scholar
  27. Sabatier, D., Grimaldi, M., Prévost, M.-F., Guillaume, J., Godron, M., Dosso, M. & Curmi, P. 1997. The influence of soil cover organisation on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol. 131: 81–108.Google Scholar
  28. Sarrailh, J. M. 1980. L'écosystè me forestier guyanais. Etude écologique de son évolution sous l'effet des transformations en vue de sa mise en valeur. Bois For. Trop. 189: 31–36.Google Scholar
  29. Torquebiau, E. F. 1981. Analyse architecturale de la forê t de Los Tuxtlas (Veracruz), Mexique. Unpublished PhD thesis, Université Montpellier II, Montpellier.Google Scholar
  30. Torquebiau, E. F. 1986. Mosaic patterns in Dipterocarp rain forest in Indonesia, and their implications for practical forestry. J. Trop. Ecol. 2: 301–325.Google Scholar
  31. Van der Meer, P. J. 1995. Canopy dynamics of tropical rain forest in French Guiana. Unpublished PhD thesis, Wageningen Agricultrural University, Wageningen.Google Scholar
  32. Whitmore, T. C. 1978. Gaps in the forest canopy Pp. 639–655. In: Tomlinson, P. B. & Zimmermann, M. H. (eds), Tropical trees as living systems. Proceedings of the 4th Cabot symposium, Petershaw. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. Birnbaum
    • 1
  1. 1.MontpellierFrance

Personalised recommendations