, Volume 446, Issue 1, pp 19–28 | Cite as

Spine development in Brachionus quadridentatus from an Australian billabong: genetic variation and induction by Asplanchna

  • John J. Gilbert


Fertilized resting eggs of Australian Brachionus quadridentatus hatched 2–3 days after hydration into females with or, more frequently, without posterior lateral spines. These females then produced clones with short-spined or long-spined phenotypes. Asplanchna girodi induced females from two short-spined clones and one long-spined clone to produce daughters with significantly longer posterior lateral spines. In all clones, there were significant differences in spine development among offspring of mothers within Asplanchna and control treatments. The range of phenotypes reported in one short-spined clone is observed in the billabong and includes much of the variation described for the species, with mehleni (long-spined) phenotypes occurring with Asplanchna. In B. quadridentatus, the ecological significance of long-spined, basic phenotypes, and of the spine-development response to Asplanchna, is unclear. In laboratory cultures, females of all clones were attached to the substratum or water surface, and were safe from Asplanchna; in nature, females are epiphytic and probably rarely susceptible to Asplanchna. Most (96%) resting eggs produced in cultures and kept under culture conditions hatched after a 7-day latent period. This raises questions regarding natural conditions which might prevent hatching and allow accumulation of resting eggs in a sediment egg bank. Hatching of resting eggs in nature may be enhanced in sediments which dry and then become flooded after rains.

Asplanchna Brachionus genetic variation resting eggs spines spine induction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanchot, J. & R. Pourriot, 1982. Effets de l'intensité d'eclairement et de la longueur d'onde sur l'éclosion des œufs de durée de Brachionus rubens (Rotifère). C.R. Acad. Sci. 295: 123–125.Google Scholar
  2. Clément, P. & R. Pourriot, 1979. Influence de l'âge des grandparents sur l'apparition des mâles chez le Rotifère Notommata copeus Ehr. Internat. J. Invert. Reproduction 1: 89–98.Google Scholar
  3. De Beauchamp, P., 1952. Un facteur de la variabilité chez les rotifères du genre Brachionus. C. R. Acad. Sci. 234: 573–575.Google Scholar
  4. Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.Google Scholar
  5. Gilbert, J. J., 1967. Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Arch. Hydrobiol. 64: 1–62.Google Scholar
  6. Gilbert, J. J., 1968. Dietary control of sexuality in the rotifer Asplanchna brightwelli Gosse. Physiol. Zool. 41: 14–43.Google Scholar
  7. Gilbert, J. J., 1974. Dormancy in rotifers. Trans. am. Microsc. Soc. 93: 490–513.Google Scholar
  8. Gilbert, J. J., 1993. Rotifera. In K. G. & R. G. Adiyodi (eds), Reproductive Biology of Invertebrates. Vol. VI, Part A. Asexual Propagation and Reproductive Strategies. Oxford & IBH Publishing Co., New Delhi: 231–263.Google Scholar
  9. Gilbert, J. J., 1999. Kairomone-induced morphological defenses in rotifers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, N.J.: 127–141.Google Scholar
  10. Gilbert, J. J. & H. J. MacIsaac, 1989. The susceptibility of Keratella cochlearis to interference from small cladocerans. Freshwat. Biol. 22: 333–339.Google Scholar
  11. Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnol. Oceanogr. 29: 1309–1316.Google Scholar
  12. Gilbert, J. J. & J. K. Waage, 1967. Asplanchna, Asplanchna substance and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment. Ecology 48: 1027–1031.Google Scholar
  13. Green, J. & O. B. Lan, 1974. Asplanchna and the spines of Brachionus calyciflorus in two Javanese sewage ponds. Freshwat. Biol. 4: 223–226.Google Scholar
  14. Green, J. D. & R. J. Shiel, 2000. Predation by the centropagid calanoid, Boeckella major, structuring microinvertebrate communities in the absence of fish. Verh. Int. Ver. Limnol, 27, in press.Google Scholar
  15. Halbach, U., 1970. Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4: 262–318.Google Scholar
  16. Hampton, S. E. & J. J. Gilbert, 2001. Observations of insect predation on rotifers. Hydrobiologia, in press.Google Scholar
  17. Hillman, T. J. & R. J. Shiel, 1991. Macro-and microinvertebrates in Australian billabongs. Verh. int. Ver. Limnol. 24: 1581–1587.Google Scholar
  18. Iyer, N. & T. R. Rao, 1996. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and field studies. Freshwat. Biol. 36: 521–533.Google Scholar
  19. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas (Ñberordnung Monogononta), Bestimmugswerk begründet von Max Voigt. 2 Vols. Gebrüder Borntraeger Stuttgart.Google Scholar
  20. Koste, W. & R. J. Shiel, 1987. Rotifera from Australian inland waters. I. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invert. Taxon. 1: 949–1021.Google Scholar
  21. Lite, J. C. & D. D. Whitney, 1925. The role of aeration in the hatching of fertilized eggs of rotifers. J. exp. Zool. 43: 1–9.Google Scholar
  22. Marinone, M. C. & H. E. Zagarese, 1991. A field and laboratory study on factors affecting polymorphism in the rotifer Keratella tropica. Oecologia 86: 372–377.Google Scholar
  23. Pourriot, R., 1964. Étude experimentale de variations morphologiques chez certaines espéces de rotifères. Bull. Soc. Zool. Fr. 89: 555–561.Google Scholar
  24. Pourriot, R., 1974. Relations prédateur-proie chez les Rotifères: influence du prédateur (Asplanchna brightwelli) sur la morphologie de la proie (Brachionus bidentata). Ann. Hydrobiol. 5: 43–55.Google Scholar
  25. Pourriot, R., D. Benest & C. Rougier, 1982. Processus d'éclosion des œufs de durée de Brachionus calyciflorus Pallas (Rotifère). Comparaison de deux clones. Vie Milieu 32: 83–87.Google Scholar
  26. Pourriot, R., D. Benest & C. Rougier, 1983. Effet de la température sur l'éclosion d'œufs de durée provenant de populations naturelles de Brachionidae (Rotifères). Bull. Soc. Zool. Fr. 108: 59–66.Google Scholar
  27. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.Google Scholar
  28. Sarma, S. S. S., 1987. Experimental studies on the ecology of Brachionus patulus (Müller) (Rotifera) in relation to food, temperature and predation. PhD thesis, University of Delhi, India.Google Scholar
  29. Segers, H., 1995. Nomenclatural consequencesof some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313/314: 121–122.Google Scholar
  30. Shiel, R. J., J. D. Green & D. L. Nielsen, 1998. Floodplain biodiversity: why are there so many species? Hydrobiologia 387/388: 39–46.Google Scholar
  31. Snell, T.W., B. E. Burke & S. D. Messur, 1983. Size and distribution of resting eggs in a natural population of the rotifer Brachionus plicatilis. Gulf Res. Rep. 7: 285–287.Google Scholar
  32. Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. aquat. Sci. 38: 721–724.Google Scholar
  33. Stemberger, R. S., 1990. Food limitation, spination and reproduction in Brachionus calyciflorus. Limnol. Oceanogr. 35: 33–44.Google Scholar
  34. Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639–647.Google Scholar
  35. Stemberger, R. S. & J. J. Gilbert, 1987. Multiple species induction of morphological defenses in the rotifer Keratella testudo. Ecology 68: 370–378.Google Scholar
  36. Zagarese, H. E. & M. C. Marinone, 1992. Induction and inhibition of spine development in the rotifer Keratella tropica: evidence from field observations and laboratory experiments. Freshwat. Biol. 28: 289–300.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • John J. Gilbert
    • 1
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverU.S.A.

Personalised recommendations