Journal of Applied Phycology

, Volume 13, Issue 4, pp 307–315 | Cite as

Microalgal mass culture systems and methods: Their limitation and potential

  • Yuan-Kun Lee
Article

Abstract

Cultivation of microalgae using natural and man-made open-ponds istechnologically simple, but not necessary cheap due to the high downstream processing cost. Products of microalgae cultured in open-pondscould only be marketed as value-added health food supplements, specialityfeed and reagents for research. The need to achieve higher productivityand to maintain monoculture of algae led to the development of enclosedtubular and flat plate photobioreactors. Despite higher biomassconcentration and better control of culture parameters, data accumulatedin the past 25 years have shown that the illuminated areal, volumetricproductivity and cost of production in these enclosed photobioreactors arenot better than those achievable in open-pond cultures. The technicaldifficulty in sterilizing these photobioreactors has hindered their applicationfor the production of high value pharmaceutical products. The alternativeof cultivating microalgae in heterotrophic mode in sterilizable fermentorshas achieved some commercial success. The maximum specific growth ratesof heterotrophic algal cultures are in general slower than those measured inphotosynthetic cultures. The biomass productivity of heterotrophic algalcultures has yet to achieve a level that is comparable to industrialproduction of yeast and other heterotrophic microrganisms. Mixotrophiccultivation of microalage takes advantage of their ability to utilise organicenergy and carbon substrates and perform photosynthesis concurrently. Moreover, production of some algal metabolites is light regulated. Futuredesign of sterilizable bioreactors for mixotrophic cultivation of microalgaemay have to consider the organic substrate the main source of energy andlight the supplemental source of energy, a change in mindset.

culture method culture process culture system heterotrophy microalgae mixotrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson B, Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook. MacMillan, Surrey: 1117 pp.Google Scholar
  2. Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. appl. Phycol. 6: 123-129.Google Scholar
  3. Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University, Cambridge: 293 pp.Google Scholar
  4. Borowitzka MA (1992) Algal biotechnology products and process-Matching science and economics. J. appl. Phycol. 4: 267-279.Google Scholar
  5. Borowitzka MA (1997) Microalgae for aquaculture: Opportunities and constrains. J. appl. Phycol. 9: 393-401.Google Scholar
  6. Borowitzka MA (1999) Commercial production of microalgae: Ponds, tanks, tubes and fermentors. J. Biotechnol. 70: 313-321.Google Scholar
  7. Chaumont D (1993) Biotechnology of algal biomass production: A review of systems for outdoor mass culture. J. appl. Phycol. 5: 593-604.Google Scholar
  8. Chaumont D, Thepenier C, Gudin C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum-From laboratory to pilot plant. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 199-208.Google Scholar
  9. Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. appl. Phycol. 3: 203-209.Google Scholar
  10. Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem. 31: 601-604.Google Scholar
  11. Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224.Google Scholar
  12. Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18: 603-608.Google Scholar
  13. Cohen Z (1999) Porphyridium cruentum. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.Google Scholar
  14. Cook JR, Heinrich B (1965) Glucose vs acetate metabolism in Euglena. J. Protozool. 12: 581-583Google Scholar
  15. Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technol. 38: 245-250.Google Scholar
  16. Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Algol. Stud. (Trebon) 76: 129-147.Google Scholar
  17. Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature, London 175: 42.Google Scholar
  18. Droop MR (1974) Heterotrophy of carbon. In Stewart WDP (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 530-559.Google Scholar
  19. Edmund T, Lee Y, Bazin MJ (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytol. 116: 331-335.Google Scholar
  20. Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18:199-205.Google Scholar
  21. Fernandez AFG, Camacho GF, Perez SJA, Sevilla FJM, Grima ME (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioengng. 58: 605-616.Google Scholar
  22. Garcia MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. appl. Phycol. 12: 239-248.Google Scholar
  23. Gladue RM (1991) Heterotrophic microalgae production: Potential for application to aquaculture feeds. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems, Oceanic Institute, Honolulu, pp. 275-286.Google Scholar
  24. Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J. appl. Phycol. 6: 131-141.Google Scholar
  25. Grima EM, Perez JAS, Camacho FG, Sanchez JLG, Fernandez FGA, Alonso DL (1994) Outdoor culture of Isochrysis galbana Alii-4 in a closed tubular photobioreactor. J. Biotechnol. 37: 159-166.Google Scholar
  26. Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1996) Productivity analysis of outdoor chemostat culture in tubular air-lift photobiorectors. J. appl. Phycol. 8: 369-380.Google Scholar
  27. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J. appl. Phycol. 6: 331-335.Google Scholar
  28. Grobbelaar JU (2000) Physiological and technological considerations for optimisingmass algal cultures. J. appl. Phycol. 12: 201-206.Google Scholar
  29. Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. appl. Phycol. 8: 335-343.Google Scholar
  30. Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors. In Palz W, Pirruitz D (eds), Energy from Biomass Series E Vol. 5, Reidel, Dordrecht, pp. 184-193.Google Scholar
  31. Guterman H, Ben Yaskov S, Vonshak A (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioengng. 34: 143-152.Google Scholar
  32. Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol. 53: 14-20.Google Scholar
  33. Hoare DS, Hoare SL, Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49: 351-370.Google Scholar
  34. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengng 51: 51-60.Google Scholar
  35. Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. appl. Phycol. 6: 391-396.Google Scholar
  36. Hu Q, Richmond A (1996) Productivity and photosynthetic effi-ciency of Spirulina platensis as affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. J. appl. Phycolo. 8: 139-145Google Scholar
  37. Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189.Google Scholar
  38. Kamiya A, Kowallik W(1987) Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiol. 28: 611-619.Google Scholar
  39. Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. appl. Phycol. 9: 559-563.Google Scholar
  40. Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferm. Bioengng. 74: 12-20.Google Scholar
  41. Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 19: 507-509.Google Scholar
  42. Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of th microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 70: 357-362.Google Scholar
  43. Kyle DJ, Gladue RM (1991) Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO91/14427, October 3, 1991.Google Scholar
  44. Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend. Trends Biotechnol. 4: 186-189.Google Scholar
  45. Lee YK (1990) Genetic and technological improvements with respect to mass cultivation of microalgae. In Lee YK, Nga BH, Yeo V (eds), Microbiology Applications in Food Biotechnology. Institute of Standard & Industrial Research, Singapore, pp. 61-73.Google Scholar
  46. Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J. appl. Phycol. 9: 403-411.Google Scholar
  47. Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. appl. Phycol. 8: 163-169.Google Scholar
  48. Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J. appl. Phycol. 7: 47-51.Google Scholar
  49. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995-1000.Google Scholar
  50. Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioengng 40: 1119-1122.Google Scholar
  51. Lee YK, Richmond A (1998) Bioreactor technology for mass cultivation of photoautotrophic microalgae. In Fingerman M, Nagabhushanam R, Thompson M (eds), Recent Advances in Marine Biotechnology Vol. 2, Environmental Marine Biotechnology. Oxford & IBH, New Delhi, pp. 271-288.Google Scholar
  52. Lee YK, Zhang DH (1999) Production of astaxanthin by Haematococcus. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.Google Scholar
  53. Lewin JC, Lewin RA (1967) Culture and nutrition of some apochlorotic diatoms. J. gen. Microbiol. 11: 361-367.Google Scholar
  54. Ma X, Chen KW, Lee YK (1997) Growth of Chlorella outdoor in a changing light environment. J appl. Phycol. 9: 425-430.Google Scholar
  55. Marquez FJ, Nishio N, Nagai S (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164.Google Scholar
  56. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengng 76: 408-410.Google Scholar
  57. Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol. 95: 1150-1155.Google Scholar
  58. Matsunaga T, Takeyama H, Sudo H, Oyama N, Nriura S, Takano H, Hirano m, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococus sp. using a novel photobioreactor employing light-diffusing optical fibers. Appl. Biochem. Biotechnol. 28/29: 157-167.Google Scholar
  59. Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. appl. Phycol. 10: 515-525.Google Scholar
  60. Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for largescale monoculture of microalgae. J. Biotechnol. 70: 249-270.Google Scholar
  61. Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresenel lenses and transmitted through optical fibers. Bioengng Symp. 15: 331-345.Google Scholar
  62. Muller-Feuga A, Guedes RL, Herve A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using porphyridium cruentum. J. appl. Phycol. 10: 83-90.Google Scholar
  63. Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J. appl. Phycol. 9: 503-510.Google Scholar
  64. Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioengng. 23: 1121-1132.Google Scholar
  65. Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation. Development of processes for efficienct light utilization in photobioreactors. J. appl. Phycol. 12: 207-218.Google Scholar
  66. Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. appl. Phycol. 10: 67-74.Google Scholar
  67. Ogbonna JC, Toshihiko S, Hideo T (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70: 289-297.Google Scholar
  68. Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54: 451-462.Google Scholar
  69. Pirt SJ, Lee YK, Richmond A, Pirt Watts M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J. Chem. Technol. Biotechnol. 30: 25-34.Google Scholar
  70. Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33: 35-58.Google Scholar
  71. Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 209-218.Google Scholar
  72. Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Marine Biol. 83: 231-238.Google Scholar
  73. Pulz O (1994) Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. University of Malaya, Kuala Lumpur, pp. 113-117.Google Scholar
  74. Richmond A (1986) Handbook of Microalgal Mass Culture. CRC, Boca Raton: 528 pp.Google Scholar
  75. Richmond A (1996) Efficient utilization of high irradiance for production of photoautotropic cell mass: A survey. J. appl. Phycol. 8: 381-387.Google Scholar
  76. Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J. appl. Phycol. 12: 441-451.Google Scholar
  77. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoor. J. appl. Phycol. 5: 327-332.Google Scholar
  78. Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. appl. Phycol. 2: 195-206.Google Scholar
  79. Robinson LF (1987) Improvements relating to biomass production. European Patent 0,239,272.Google Scholar
  80. Running JA, Huss RJ, Olson PT (1994) Heterotrophic production of ascorbic acid by microalgae. J. appl. Phycol. 6: 99-104.Google Scholar
  81. Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol. Stud. (Trebon) 1: 11.Google Scholar
  82. Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94: 972-983.Google Scholar
  83. Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, pp. 97-113.Google Scholar
  84. Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.Google Scholar
  85. Tan CK, Johns MR (1991) Fatty acid production by hetrotrophic Chlorella saccharophila. Hydrobiologia 215: 13-19.Google Scholar
  86. Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric. biol. Chem. 53: 305-312.Google Scholar
  87. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61-74.Google Scholar
  88. Tredici MR, Carlozzi P, Zittelli CG, Materassi R (1991) A vertical aveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Biores.Technol. 38: 153-159.Google Scholar
  89. Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221-231.Google Scholar
  90. Tsavalos AJ, Day JG (1994) Development of media for the mixotrophic/ heterotrophic culture of Brachiomonas submarina. J. appl. Phycol. 6: 431-433.Google Scholar
  91. Valiente EF, Nieva M, Avendano C, Maeso ES (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis. Plant Cell Physiol. 33: 307-313.Google Scholar
  92. Vonshak A (1997) Outdoor mass production of Spirulina: The basic concept. In Vonshak A (ed.), Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis, London, pp. 79-99.Google Scholar
  93. Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J. Bact. 70: 175-183.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Yuan-Kun Lee
    • 1
  1. 1.Department of MicrobiologyNational University of SingaporeSingaporeSingapore

Personalised recommendations