Journal of Applied Electrochemistry

, Volume 31, Issue 7, pp 773–779

Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications

  • Li Qingfeng
  • H.A. Hjuler
  • N.J. Bjerrum
Article

Abstract

A polymer electrolyte membrane fuel cell operational at temperatures around 150–200 °C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H3PO4-doped in a doping range from 300 to 1600 mol %. Physiochemical properties of the membrane electrolyte have been investigated by measurements of water uptake, acid doping level, electric conductivity, mechanical strength and water drag coefficient. Electrical conductivity is found to be insensitive to humidity but dependent on the acid doping level. At 160 °C a conductivity as high as 0.13 S cm−1 is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 °C, fuel cells based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide.

electrolyte fuel cell polybenzimidazole (PBI) polymer membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Gottesfeld and T.A. Zawodzinski, in R.C. Alkire, H. Gerischer, D.M. Kolb and C.W. Tobias (Eds), 'Advances in Electrochemical Science and Engineering', Vol. 5, (Wiley-VCH, Weinheim, 1997), p. 195.Google Scholar
  2. 2.
    X. Gang, Li Qingfeng, H.A. Hjuler and N.J. Bjerrum, J. Electrochem Soc. 142 (1995) 2890.Google Scholar
  3. 3.
    S. Gottesfeld and J. Pafford, J. Electrochem. Soc. 135 (1998) 2651.Google Scholar
  4. 4.
    J.C. Amphlett, R.F. Mann and B.A. Peppley, Int. J. Hydrogen Energy 21 (1996) 673.Google Scholar
  5. 5.
    M.P. Hogarth and G.A. Hards, Platinum Metal Rev. 40 (1996) 150.Google Scholar
  6. 6.
    J.S. Wainright, J-T. Wang, D. Weng, R.F. Savinell and M. Litt, J. Electrochem. Soc. 142 (1995) L121.Google Scholar
  7. 7.
    X. Glipa, M.E. Haddad, D.J. Jones and J. Roziére, Solid State Ionics 97 (1997) 323.Google Scholar
  8. 8.
    J-T. Wang, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1233.Google Scholar
  9. 9.
    S.R. Samms, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1225.Google Scholar
  10. 10.
    D. Weng, J.S. Wainright, U. Landau and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1260.Google Scholar
  11. 11.
    S.K. Zecevic, J.S. Wainright, M.H. Litt, S. Lj. Gojkovic and R.F. Savinell, J. Electrochem. Soc. 144 (1997) 2973.Google Scholar
  12. 12.
    Li Qingfeng H.A. Hjuler and N.J. Bjerrum, Electrochim. Acta 45 (2000) 4219.Google Scholar
  13. 13.
    J-T. Wang, R.F. Savinell, J. Wainright, M. Litt and H. Yu, Electrochim. Acta 41 (1996) 193.Google Scholar
  14. 14.
    J-T. Wang, J.S. Wainright, R.F. Savinell and M. Litt, J. Appl. Electrochem. 26 (1996) 751.Google Scholar
  15. 15.
    J-T. Wang, W.F. Lin, M. Weber, S. Wasmus and R.F. Savinell, Electrochim. Acta 43 (1998) 3821.Google Scholar
  16. 16.
    M. Weber, J-T. Wang, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) L158.Google Scholar
  17. 17.
    R. Bouchet, E. Siebert and G. Vitter, J. Electrochem. Soc. 144 (1997) L95.Google Scholar
  18. 18.
    E. Fekete, Z. Peredy, E. Földes, F.E. Karasz and B. Puánszky, Polymer Bull. 39 (1997) 93.Google Scholar
  19. 19.
    T.A. Zawodzinski, Jr., T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1981.Google Scholar
  20. 20.
    T.A. Zawodzinski, Jr. C. Derouin, S. Radzinski, R.J. Sherman, V. T. Smith, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1041.Google Scholar
  21. 21.
    J.T. Hinatsu, M. Mizuhata and H. Takenaka, J. Electrochem. Soc. 141 (1994) 1493.Google Scholar
  22. 22.
    K. Broka and P. Ekdunge, J. Appl. Electrochem. 27 (1997) 117.Google Scholar
  23. 23.
    T-S. Chung, Rev. Macromol. Chem. Phys. C37 (1997) 277.Google Scholar
  24. 24.
    J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell and M. Litt, Electrochim. Acta 43 (1998) 1289.Google Scholar
  25. 25.
    R. Bouchet and E. Siebert, Solid State Ionics 118 (1999) 287.Google Scholar
  26. 26.
    T.F. Fuller and J. Newman, J. Electrochem. Soc. 139 (1992) 1332.Google Scholar
  27. 27.
    T.A. Zawodzinski, J. Davey, J. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 297.Google Scholar
  28. 28.
    X. Ren, W. Henderson and S. Gottesfeld, J. Electrochem. Soc. 144 (1997) L267.Google Scholar
  29. 29.
    G. Xie and T. Okada, J. Electrochem. Soc. 142 (1995) 3057.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Li Qingfeng
    • 1
  • H.A. Hjuler
    • 1
  • N.J. Bjerrum
    • 1
  1. 1.Materials Science Group, Department of ChemistryTechnical University of DenmarkLyngbyDenmark

Personalised recommendations