Advertisement

Journal of Low Temperature Physics

, Volume 123, Issue 5–6, pp 303–314 | Cite as

Measurement of Low Temperature Specific Heat of Crystalline TeO2 for the Optimization of Bolometric Detectors

  • M. Barucci
  • C. Brofferio
  • A. Giuliani
  • E. Gottardi
  • I. Peroni
  • G. Ventura
Article

Abstract

The optimization of bolometric detectors, like those that will be developed for the rare event experiment CUORE, requires a complete knowledge of the detector's thermal parameters. Since the CUORE detecting elements will consist of TeO2 crystals, we have measured the specific heat of this material down to 60 mK with the thermal relaxation method. Previous available data were taken at temperatures higher than 0.6 K. Our results are clearly consistent with a lattice dominated specific heat. The Debye temperature, evaluated to be (232±7) K, is in excellent agreement with the elastic constant values measured by other authors. The knowledge of the Debye temperature allows a simple prediction of the pulse amplitude of presently working bolometers.

Keywords

Magnetic Material Excellent Agreement Rare Event Pulse Amplitude Thermal Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Fiorini, Phys. Rep. 307, 309 (1998).Google Scholar
  2. 2.
    H. Ejiri, “Review of Double Beta Decay Experiments to Date;” E. Fiorini, “Double Beta Decay: the Future.” Review talks presented at the “Neutrino 2000” conference, Subdury, Canada, June 16-21 (2000) and to appear in the proceedings.Google Scholar
  3. 3.
    A. Alessandrello et al., Phys. Lett. B486, 13 (2000).Google Scholar
  4. 4.
    A. Alessandrello et al., Nucl. Instr. Meth. A440, 397 (2000).Google Scholar
  5. 5.
    E. E. Haller, Infrared Phys. Technol. 35, 127 (1994).Google Scholar
  6. 6.
    I. B. Rabinowich et al., Thermodinam. Orsan. Soedin (Gorkii) 7, 17 (1978).Google Scholar
  7. 7.
    G. K. White, S. J. Collocott, and J. G. Collins, J. Phys. Condens. Matter 2, 7715 (1990).Google Scholar
  8. 8.
    R. Bachmann et al., Rev. Sci. Instrum. 43, 205 (1972).Google Scholar
  9. 9.
    J. P. Shepherd, Rev. Sci. Instrum. 56, 273 (1984).Google Scholar
  10. 10.
    E. Aubourg et al., J. Low Temp. Phys. 93, 289 (1993).Google Scholar
  11. 11.
    S. J. Laredo, Proc. Roy. Soc. (London) A229, 473 (1954).Google Scholar
  12. 12.
    J. R. Olson, Cryogenics 33, 729 (1993).Google Scholar
  13. 13.
    R. E. Peterson and A. C. Anderson, J. Low Temp. Phys. 11, 639 (1973).Google Scholar
  14. 14.
    Y. Ohmachi and N. Uchida, J. Appl. Phys. 41, 2307 (1970).Google Scholar
  15. 15.
    H. Schweppe, Ultrasonics 8, 84 (1970).Google Scholar
  16. 16.
    D. D. Betts, A. B. Bhatia, and G. K. Horton, Phys. Rev. 104, 43 (1956).Google Scholar
  17. 17.
    A. Y. Wu and R. J. Sladek, Phys. Rev. B2, 5230 (1981).Google Scholar
  18. 18.
    A. Giuliani and S. Sanguinetti, Mat. Sci. Eng. R: Rep. R11 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. Barucci
    • 1
  • C. Brofferio
    • 2
  • A. Giuliani
    • 3
  • E. Gottardi
    • 1
  • I. Peroni
    • 4
  • G. Ventura
    • 1
  1. 1.University of FlorenceFlorenceItaly
  2. 2.University of Milano–Bicocca and INFN-MilanoMilanItaly
  3. 3.University of Insubria, Como, and INFN-MilanoMilanItaly
  4. 4.CNR/IMGCTurinItaly

Personalised recommendations