Journal of Paleolimnology

, Volume 26, Issue 3, pp 327–342 | Cite as

Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models

  • Roberto Quinlan
  • John P. Smol


Criteria for removing training set lakes and taxa in chironomid‐based inference models, due to low abundances, have largely been ad hoc. We used an anoxia inference model and a hypolimnetic oxygen model from south‐central Ontario to determine what effect subfossil head capsule abundance and taxa deletion criteria have on fossil inference statistics. Results from six training set lakes suggest that a minimum abundance of 40–50 head capsules is sufficient for use in inference models, however more diverse samples likely require more than 50 head capsules. Taxa deletion criteria substantially improved the predictive ability of inference models (lowered the root mean squared error of prediction (RMSEP)). The common practice of including taxa with only ≥ 2% abundance in at least two lakes was one of the deletion criteria that much improved inference models. Similar deletion criteria, such as ≥ 2% in at least 3 lakes and ≥ 3% in at least 1 lake, produced comparable improvements (up to 18% reduction in RMSEP).

Chironomidae inference models minimum counts head capsules taxa deletion methods counting procedures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begon, M., J. L. Harper & C. R. Townsend, 1986. Ecology: Individuals, Populations and Communities. Blackwell Science, Oxford, UK, pp. 681–683.Google Scholar
  2. Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstruction. Rev. Palaeobot. Palynol. 83: 107–117.Google Scholar
  3. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quat. Res. Assoc., Cambridge, UK, pp. 161–254.Google Scholar
  4. Brodersen, K. P. & C. Lindegaard, 1999. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwat. Biol. 42: 143–157.Google Scholar
  5. Brodersen, K. P. & C. Lindegaard, 1997. Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342/343: 125–132.Google Scholar
  6. Brodin, Y. W. & M. Gransberg, 1993. Responses of insects, especially Chironomidae (Diptera), and mites to 130 years of acidification in a Scottish lake. Hydrobiologia 250: 201–212.Google Scholar
  7. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid–inferred late–glacial and early–Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.Google Scholar
  8. Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, S.E. Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308.Google Scholar
  9. Bryce, D., 1962. Chironomidae (Diptera) from fresh water sediments, with special reference to Malham Tarn (Yorks.). Trans. Soc. Brit. Entomol. 10: 41–54.Google Scholar
  10. Clerk, S., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.Google Scholar
  11. Gams, H., 1927. Die Geschicte der Lunzer Seen, Moore und Wälder. Int. Revue ges. Hydrobiol. Hydrogr. 18: 305–387.Google Scholar
  12. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water–quality changes in south–central Ontario lakes affected by cottage development and acidification. Can. J. Fish. Aquat. Sci. 53: 1–17.Google Scholar
  13. Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44: 739–756.Google Scholar
  14. Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223–241.Google Scholar
  15. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  16. Hofmann, W., 1993. Late–glacial/Holocene changes of the climatic and trophic conditions in three Eifel Maar lakes, as indicated by faunal remains. II. Chironomidae (Diptera). In Negendank, J. F. W. & B. Zolitschka (eds), Paleolimnology of European Maar Lakes, Lecture Notes in Earth Sciences, 49, pp. 421–433.Google Scholar
  17. Johnson, M. G., J. R. M. Kelso, O. C. McNeil & W. B. Morton, 1990. Fossil midge associations and the historical status of fish in acidified lakes. J. Paleolim. 3: 113–127.Google Scholar
  18. Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae, and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fenn. 22: 71–104.Google Scholar
  19. Kingston, J. C., 1986. Diatom analysis – basic protocol. In Charles, D. F., D. R. Whitehead (eds), Paleoecological Investigation of Recent Lake Acidification: Methods and Project Description. Electric Power Research Institute Inc., Palo Alto, USA, EA–4906, Research Report 2174–10, pp. 6.1–6.11.Google Scholar
  20. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multi–proxy investigation of late–glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.Google Scholar
  21. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3: a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample–specific errors of prediction. J. Paleolim. 10: 147–152.Google Scholar
  22. Little, J., 1999. Development and Application of a Chironomid–based Inference Model for Inferring Past Hypolimnetic Oxygen Conditions in southeastern Ontario Lakes. MSc. thesis, Queen's University, Kingston, Canada, 108 pp.Google Scholar
  23. Little, J., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can. J. Fish. Aquat. Sci. 57: 333–341.Google Scholar
  24. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  25. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.Google Scholar
  26. Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.Google Scholar
  27. Masaferro, J., A. Lami, P. Guilizzoni & F. Niessen, 1993. Record of changes in the fossil chironomids and other parameters in the volcanic Lake Nemi (central Italy). Verh. Internat. Verein. Limnol. 25: 1113–1116.Google Scholar
  28. Meriläinen, J. J. & V. Hamina, 1993. Recent environmental history of a large, originally oligotrophic lake in Finland: a palaeolimnological study of chironomid remains. J. Paleolim. 9: 129–140.Google Scholar
  29. Nürnberg, G. K., 1995. Quantifying anoxia in lakes. Limnol. Oceanogr. 40:1100–1111.Google Scholar
  30. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.Google Scholar
  31. Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279–294.Google Scholar
  32. Palmer, S. L., 1998. Subfossil Chironomids (Insecta: Diptera) and Climatic Change at High Elevation Lakes in the Engelmann Spruce–Subalpine Fir Zone in southwestern British Columbia. M.Sc. thesis, Department of Zoology, University of British Columbia, Vancouver, Canada, 105 pp.Google Scholar
  33. Pellatt, M. G., M. J. Smith, R. W. Mathewes & I. R. Walker, 1998. Palaeoecology of postglacial shifts in the northern Cascade Mountains, Canada. Palaeogeogr. Palaeoclimat. Palaeoecol. 141: 123–148.Google Scholar
  34. Prat, N & M. V. Daroca, 1983. Eutrophication processes in Spanish reservoirs as revealed by biological records in profundal sediments. Hydrobiologia 103: 153–158.Google Scholar
  35. Quinlan, R., 2000. Fossil Chironomids as indicators of water quality changes in south–central Ontario and Qu'Appelle Valley (Saskatchewan) lakes. Ph.D. thesis, Queen's University, Kingston, Canada, 258 pp.Google Scholar
  36. Quinlan, R., J. P. Smol & R. I. Hall, 1998. Quantitative inferences of past hypolimnetic anoxia in south–central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587–596.Google Scholar
  37. Rück, A., I. R. Walker & R. Hebda, 1998. A palaeolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.Google Scholar
  38. Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.Google Scholar
  39. Sayer, C., N. Roberts, J. Sadler, C. David & P. M. Wade, 1999. Biodiversity changes in a shallow lake ecosystem: a multiproxy palaeolimnological analysis. J. Biogeogr. 26: 97–114.Google Scholar
  40. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA, 117 pp.Google Scholar
  41. Smith, M. J., M. G. Pellatt, I. R. Walker & R. W. Mathewes, 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.Google Scholar
  42. ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO for Windows, version 4.0. Centre for Biometry Wageningen, CPRO–DLO, Wageningen, The Netherlands.Google Scholar
  43. Uutala, A., 1986. Paleolimnological Assessment of the Effects of Lake Acidification on Chironomidae (Diptera) Assemblages in the Adirondack Region of New York. Ph.D. thesis, State University of New York, College of Environmental Science and Forestry, Syracuse, USA, 156 pp.Google Scholar
  44. Verschuren, D., 1994. Sensitivity of tropical–African aquatic invertebrates to short–term trends in lake level and salinity: a paleolimnological test at Lake Oloidien, Kenya. J. Paleolim. 10: 253–263.Google Scholar
  45. Walker, I. R, 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  46. Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arctic Alp. Res. 27: 258–263.Google Scholar
  47. Walker, I. R. & C. G. Paterson, 1983. Post–glacial chironomid succession in two small, humic lakes in the New Brunswick–Nova Scotia (Canada) border area. Freshwat. Invert. Biol. 2: 61–73.Google Scholar
  48. Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. Aquat. Sci. 52: 950–960.Google Scholar
  49. Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. Internat. 20: 51–70.Google Scholar
  50. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975–987.Google Scholar
  51. Warwick, W. F., 1980. Palaeolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. Aquat. Sci. 206: 1–117.Google Scholar
  52. Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.Google Scholar
  53. Williams, N. E. & D. D. Williams, 1997. Palaeoecological reconstruction of natural and human influences on groundwater outflows. In P. J. Boon & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable? Scottish Natural Heritage, Edinburgh, pp. 172–180.Google Scholar
  54. Wilson, S. E., B. F. Cumming & J. P. Smol. 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219–lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580–1594.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Roberto Quinlan
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological and Environmental Assessment Research Laboratory (PEARL), Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations