Foundations of Physics

, Volume 31, Issue 2, pp 355–370

Quantum Wells in Tilted Fields: Semiclassical Amplitudes and Phase Coherence Times

  • T. S. Monteiro
  • D. S. Saraga
Article

Abstract

Experiments on quantum wells in tilted fields have stimulated several groups to investigate semiclassical theories for the current fluctuations. As a result, there is now a sort of “Zoo” of different types of trajectories (Periodic Orbits, Normal Orbits, Central Closed Orbits, Ghost Periodic Orbits, Saddle Orbits, Minimal Orbits) which have all been used to analyse these experimental spectra. Here we review briefly the semiclassical descriptions for this system and discuss which types of trajectories are most appropriate in those regimes where one cannot use Periodic Orbits. We conclude that using either Saddle Orbits (SOs) or Minimal Orbits (MOs) yields excellent agreement with experiment and quantal calculations. We also investigate the damping of the amplitudes of POs (or other semiclassical trajectories). In these scaling systems, different experiments on wells of variable dimensions can correspond to the same classical dynamics and even the same effective ℏ. The trajectory associated with the experimental current oscillation is unchanged: the only significant alteration is a re-scaling of the period T of the PO, affecting only the amplitude damping factors τe−T/τ due to incoherent processes in the experiment. By comparing measurements of the same period-doubling feature of the current in 85 nm and 120 nm wells we can probe the value of τ from the change in the PO (or SO/MO) amplitudes which are estimated from the experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    O. Zobay and G. Alber, ``Periodic orbits and molecular photoabsorption,'' J. Phys. B 26, L539 (1993).Google Scholar
  2. 2.
    B. Huppert, B. Eckhardt, and V. Engel, ``Semiclassical photodissociation cross section for H2O,'' J. Phys. B: At. Mol. Opt. Phys. 30, 3191 (1997).Google Scholar
  3. 3.
    D. Wintgen, ``Connection between long-range correlations in quantum spectra and classi-cal periodic orbits,'' Phys. Rev. Lett. 58, 1589 (1987).Google Scholar
  4. 4.
    E. B. Bogomolny and D. C. Rouben, ``Semiclassical description for resonant tunneling,'' Europhys. Lett. 43, 111 (1998); Eur. Phys. J. B 9, 695 (1999).Google Scholar
  5. 5.
    E. E. Narimanov, N. R. Cerruti, H. U. Baranger, and S. Tomsovic, ``Chaos in quantum dots: Dynamical modulation of coulomb blockade peak heights,'' Phys. Rev. Lett. 83, 2640 (1999).Google Scholar
  6. 6.
    C. Gnachl, F. Capasso, E. E. Narimanov et al., ``High power directional emission from lasers with directional emission,'' Science 280, 1556 (1998).Google Scholar
  7. 7.
    B. Eckhardt, S. Fishman, K. Müller, and D. Wintgen, ``Semiclassical matrix elements from periodic orbits,'' Phys. Rev. A 45, 3531 (1992).Google Scholar
  8. 8.
    D. S. Saraga, Ph.D. thesis, University College London (1999), www.tampa.phys.ucl.ac.uk_ tdaniel_thesis.html.Google Scholar
  9. 9.
    D. S.6Saraga and T. S. Montiro (in press, Nonlinearity) ``Semiclassical Gaussian matrix elements for chaotic quantum wells,'' eprint chao-dyn_9911009.Google Scholar
  10. 10.
    T. M. Fromhold et al., ``Magnetotunneling spectroscopy of a quantum well in the regime of classical chaos,'' Phys. Rev. Lett. 72, 2608 (1994).Google Scholar
  11. 11.
    G. Müller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer, and K. W. West, ``Precursors and transition to chaos in a quantum well in a tilted magnetic field,'' Phys. Rev. Lett. 75, 2875 (1995).Google Scholar
  12. 12.
    D. L. Shepelyansky and A. D. Stone, ``Chaotic Landau level mixing in classical and quan-tum wells,'' Phys. Rev. Lett. 74, 2098 (1995).Google Scholar
  13. 13.
    T. S. Monteiro and P. A. Dando, ``Chaos in a quantum well in tilted fields: A scaling system,'' Phys. Rev. E 53, 3369 (1996).Google Scholar
  14. 14.
    P. B. Wilkinson, T. M. Fromhold, and L. Eaves, ``Observation of scarred wavefunctions in a quantum well with chaotic electron dynamics,'' Nature 380, 608 (1996).Google Scholar
  15. 15.
    T. S. Monteiro, D. Delande, A. J. Fisher, and G. S. Boebinger, ``Bifurcations and the transition to chaos for the resonant tunneling diode,'' Phys. Rev. B 56, 3913 (1997).Google Scholar
  16. 16.
    E. E. Narimanov and A. D. Stone, ``Origin of strong scarring of wave functions in quan-tum wells in tilted magnetic fields,'' Phys. Rev. Lett. 80, 49 (1998).Google Scholar
  17. 17.
    E. E. Narimanov, A. D. Stone, and G. S. Boebinger, ``Semiclassical theory of magneto-transport through a quantum well,'' Phys. Rev. Lett. 80, 4024 (1998).Google Scholar
  18. 18.
    D. S. Saraga and T. S. Monteiro, ``Quantum chaos with complex, non-periodic orbits,'' Phys. Rev. Lett. 81, 5796 (1998).Google Scholar
  19. 19.
    D. S. Saraga, T. S. Monteiro, and D. C. Rouben, ``Periodic orbit theory for resonant tunnelling diodes: Comparison with quantum and experimental results,'' Phys. Rev. E 58, R2701 (1998).Google Scholar
  20. 20.
    E. E. Narimanov and A. D. Stone, ``Quantum chaos in quantum wells,'' Physica D 131, 221 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • T. S. Monteiro
    • 1
  • D. S. Saraga
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUnited Kingdom

Personalised recommendations