Advertisement

Genetica

, 109:161 | Cite as

Accentuated polymorphism of heterochromatin and nucleolar organizer regions in Astyanax scabripinnis (Pisces, Characidae): tools for understanding karyotypic evolution

  • Monique Mantovani
  • Luciano Douglas dos Santos Abel
  • Carlos Alberto Mestriner
  • Orlando Moreira‐Filho
Article

Abstract

Astyanax scabripinnis has been considered a species complex because it presents high karyotypic and morphological variability among its populations. In this work, individuals of two A. scabripinnis populations from different streams in the same hydrographic basin were analyzed through C‐banding and AgNOR. Although they present distinct diploid numbers, they show meta and submetacentric chromosome groups highly conserved (numerically and morphologically). Other chromosomal characteristics are also shared by both populations, as the pattern of constitutive heterochromatin distribution (large blocks in the telomeric regions of subtelocentric and acrocentric chromosomes) and some nucleolar chromosomes. Inter‐individual variations both in the number and size of heterochromatic blocks, and in the number and localization of NORs were verified in the studied populations, characterizing them as polymorphics for these regions. The mechanisms involved in the dispersion of heterochromatin and NORs through the karyotypes, as well as the possible events related to the generation of polymorphism of those regions are discussed. Furthermore, relationships between these populations and within the context of the scabripinnis complex are also approached.

Astyanax scabripinnis constitutive heterochromatin karyotypic evolution nucleolar organizer regions (NORs) polymorphism 

References

  1. Almeida-Toledo, L.F., A.P. Bigoni, G. Bernardino, F. Foresti & S.A. Toledo-Filho, 1996. Karyotype and NOR conservatism with heterochromatin reorganization in Neotropical Bryconids. Caryologia 49: 35–43.Google Scholar
  2. Alves, A.L. & I.C. Martins-Santos, 1997. Cariótipo de duas populações de Astyanax scabripinnis (Pisces; Characidae) da bacia do rio Ivaí. Brazil. J. Genet. 20(3) Suppl.: 97.Google Scholar
  3. Amores, A., G. Martinez, J. Reina & M.C. Alvarez, 1993. Karyotype, C-banding, and Ag-silver NOR analysis of Diplodus bellottii (Sparidae, Perciformes): intra-individual polymorphism involving heterochromatic regions. Genome 36(4): 672–675.PubMedGoogle Scholar
  4. Bertollo, L.A.C., 1996. The nuclear organizer regions of Erythrinidae fish. An uncommon situation in the genus Hoplias. Cytologia 61: 75–81.Google Scholar
  5. Bertollo, L.A.C., C.S. Takahashi & O. Moreira-Filho, 1978. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Brazil. J. Genet. 1(2): 103–120.Google Scholar
  6. Britski, H.A., 1972. Peixes de água doce do Estado de São Paulo: Sistemática, pp. 79–108 in Poluição e Piscicultura. Faculdade de Saúde Pública da USP & Instituto de Pesca da C.P.R.N. da Secretaria da Agricultura, São Paulo.Google Scholar
  7. Castro, J., A. Viñas, L. Sánchez & P. Martínez, 1996. Characterization of an atypical NOR site polymorphism in brown trout (Salmo trutta) with Ag-and CMA3-staining, and fluorescent in situ hybridization. Cytogenet. Cell Genet. 75: 234–239.CrossRefGoogle Scholar
  8. Cremer, T., A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M.R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer & P. Lichter, 1993. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp. Quantit. Biol. 58: 777–792.Google Scholar
  9. Galetti, Jr. P.M. 1998. Chromosome diversity in Neotropical fishes: NOR studies. Ital. J. Zool. 65 Suppl.: 53–56.CrossRefGoogle Scholar
  10. Galetti, Jr. P.M., A.C.G. Cesar & P.C. Venere, 1991. Heterochromatin and NORs variability in Leporinus fish (Anostomidae, Characiformes). Caryologia 44(3–4): 287–292.Google Scholar
  11. Galetti, Jr. P.M., C.A. Mestriner, P.J. Monaco & E.M. Rasch, 1995. Post-zygotic modifications and intra-and inter-individual nucleolar organizing region variations in fish: report of a case involving Leporinus lacustris. Chrom. Res. 3: 285–290.PubMedCrossRefGoogle Scholar
  12. Hartley, S.E., 1988. Cytogenetic studies of Atlantic salmon, Salmo salar L., in Scotland. J. Fish Biol. 33: 735–740.CrossRefGoogle Scholar
  13. Heitz, E., 1933. Die somatische heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch. 20: 237–287.CrossRefGoogle Scholar
  14. Howell, W.M. & D.A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.PubMedCrossRefGoogle Scholar
  15. Jankun, M., M. Klinger & P. Woznicki, 1995. Chromosome variability in European vendace (Coregonus albula L.) from Poland. Caryologia 48(2): 165–172.Google Scholar
  16. John, B., 1988. The biology of heterochromatin, pp. 1–147 in Heterochromatin: Molecular and Structural Aspects, edited by R.S. Verma. Cambridge University Press.Google Scholar
  17. King, M., 1980. C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80: 191–217.CrossRefGoogle Scholar
  18. Lamond, A.I. & W.C. Earnshaw, 1998. Structure and function in the nucleus. Science 280: 547–553.PubMedCrossRefGoogle Scholar
  19. Levan, A., K. Fredga & A.A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  20. Maistro, E.L., C. Oliveira & F. Foresti, 1998. Comparative cytogenetic and morphological analysis of Astyanax scabripinnis paranae (Pisces, Characidae, Tetragonopterinae). Genet. Mol. Biol. 21(2): 201–206.Google Scholar
  21. Margarido, V.P. & P.M. Galetti Jr., 1996. Chromosome studies in fish of the genus Brycon (Characiformes, Characidae, Briconinae). Cytobios 85: 219–228.Google Scholar
  22. Martínez, P., A. Viñas, C. Bouza, J. Arias, R. Amaro & L. Sánchez, 1991. Cytogenetical characterization of hatchery stocks and natural populations of Sea and Brown Trout from northwestern Spain. Heredity 66: 9–17.Google Scholar
  23. Mizoguchi, S.M.H.N. & I.C. Martins-Santos, 1998. Cytogenetics and morphometric differences in populations of Astyanax “scabripinnis” (Pisces, Characidae) from Maringá region, PR. Genet. Mol. Biol. 21(1): 55–61.CrossRefGoogle Scholar
  24. Moreira-Filho, O. & L.A.C. Bertollo, 1991a. Astyanax scabripinnis (Pisces, Characidae): a specie complex. Brazil. J. Genet. 14(2): 331–357.Google Scholar
  25. Moreira-Filho, O. & L.A.C. Bertollo, 1991b. Extraction and use of the cephalic kidney for chromosome studies in small fish (Pisces, Characidae). Brazil. J. Genet. 14(4): 1085–1090.Google Scholar
  26. Moreira-Filho, O., L.A.C. Bertollo & P.M. Galetti Jr., 1984. Structure and variability of nucleolar organizer regions in Parodontidae fish. Can. J. Genet. Cytol. 26(5): 564–568.Google Scholar
  27. Morelli, S., L.A.C. Bertollo, F. Foresti, O. Moreira-Filho & S.A. Toledo-Filho, 1983. Cytogenetic considerations on the genus Astyanax (Pisces, Characidae). I. Karyotypic variability. Caryologia 36(3): 235–244.Google Scholar
  28. Néo, D.M., 1999. Distribuição dos cromossomos B em Astyanax scabripinnis (Pisces, Characidae) ao longo do ribeirão Grande, na região de Campos do Jordão-SP. MSc Dissertation. Universidade Federal de São Carlos, SP. pp. 1–85.Google Scholar
  29. Oliveira, C., L.F. Almeida-Toledo, F. Foresti, H. Britski & S.A. Toledo-Filho, 1988. Chromosome formulae of Neotropical freshwater fishes. Brazil. J. Genet. 11(3): 577–624.Google Scholar
  30. Oliveira, C., M.M.R. Vieira & F. Foresti, 1998. Elaboração de uma filogenia molecular para Astyanax scabripinnis (Pisces, Characiformes, Characidae). Proc. VII Simp. Citogenet. Evol. Aplic. de Peixes Neotropicais, Londrina, PR, A 19.Google Scholar
  31. Portella, A.L.B.S., P.M. Galetti Jr. & L.A.C. Bertollo, 1988. Considerations on the chromosome evolution of Tetragonopterinae (Pisces, Characidae). Brazil. J. Genet. 11(2): 307–316.Google Scholar
  32. Schweizer, D. & J. Loidl, 1987. A model for heterochromatin dispersion and the evolution of C band patterns. Chrom. Today 9: 61–74.Google Scholar
  33. Souza, I.L. & O. Moreira-Filho, 1995. Cytogenetic diversity in the Astyanax scabripinnis species complex (Pisces, Characidae). I. Allopatric distribution in a small stream. Cytologia 60: 1–11.Google Scholar
  34. Souza, I.L., O. Moreira-Filho & L.A.C. Bertollo, 1995. Cytogenetic diversity in the Astyanax scabripinnis species complex (Pisces, Characidae). II. Different cytotypes living in sympatry. Cytologia 60: 273–281.Google Scholar
  35. Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.PubMedCrossRefGoogle Scholar
  36. Smith, G.P., 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.PubMedGoogle Scholar
  37. Vieira, M.R., C. Oliveira & F. Foresti, 1998. Padrões de bandamento G em cromossomos de Astyanax scabripinnis (Pisces, Characidae) da região de Botucatu, SP. Proc. VII Simp. Citogenet. Evol. Aplic. de Peixes Neotropicais, Londrina, PR, A 18.Google Scholar
  38. Vitturi, R., A. Libertini, A. Mazzola, M.S. Colomba & G. Sara, 1996. Characterization of mitotic chromosomes of four species of the genus Diplodus: karyotypes and chromosomal nucleolar organizer region phenotypes. J. Fish Biol. 49: 1128–1137.Google Scholar
  39. White, M.J.D., 1975. Chromosomal repatterning-regularities and restrictions. Genetics 79: 63–72.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Monique Mantovani
    • 1
  • Luciano Douglas dos Santos Abel
    • 1
  • Carlos Alberto Mestriner
    • 2
  • Orlando Moreira‐Filho
    • 1
  1. 1.Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão Carlos, SPBrazil
  2. 2.Faculdade de Ciências Farmacêuticas ‐ UnespDepartamento de Ciências BiológicasAraraquara, SPBrazil

Personalised recommendations