Journal of Applied Electrochemistry

, Volume 31, Issue 6, pp 605–616 | Cite as

Modelling of through-hole electrodeposition Part I: Effect of electrical migration

  • S.H. Chan
  • H.Y. Cheh
Article

Abstract

A quantitative investigation was conducted on the effect of electrical migration on the current distribution in through-hole electrodeposition. Polarization, surface concentration and current distribution were computed as functions of the geometry of the through-hole, electrolyte flow rate, applied current density and concentration of the supporting electrolyte. Results were compared with those from a simplified model in which the electric field was neglected within the diffusion layer.

current distribution polarization surface concentration through-hole electrodeposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Pesco and H.Y. Cheh, J. Electrochem. Soc. 136 (1989) 399.Google Scholar
  2. 2.
    R. Alkire and A.A. Mirarefi, J. Electrochem. Soc. 124 (1977) 1043.Google Scholar
  3. 3.
    J.E. Chern and H.Y. Cheh, J. Electrochem. Soc. 143 (1996) 3139.Google Scholar
  4. 4.
    J.E. Chern and H.Y. Cheh, J. Electrochem. Soc. 143 (1996) 3144.Google Scholar
  5. 5.
    A.M. Pesco and H.Y. Cheh, J. Electrochem. Soc. 136 (1989) 408.Google Scholar
  6. 6.
    D.A. Hazlebeck and J.B. Talbot, J. Electrochem. Soc. 138 (1991) 1985.Google Scholar
  7. 7.
    D.A. Dudek and P.S. Fedkiw, J. Electroanal. Chem. 474 (1999) 31.Google Scholar
  8. 8.
    S. Goldbach, B. Bossche, T. Daenen, J. Deconinck and F. Lapicque, J. Appl. Electrochem. 30 (2000) 1.Google Scholar
  9. 9.
    J.S. Newman, ‘Electrochemical Systems’, 2nd edn (Prentice Hall, New Jersey, 1991).Google Scholar
  10. 10.
    V.D. Bossche, L. Bortels, J. Deconinck, S. Vandeputte and A. Hubin, J. Electroanal. Chem. 397 (1995) 35.Google Scholar
  11. 11.
    R. Caban and T.W. Chapman, J. Electrochem. Soc. 124 (1977) 1371.Google Scholar
  12. 12.
    T. Kessler and R. Alkire, J. Electrochem. Soc. 123 (1976) 990.Google Scholar
  13. 13.
    V. Patankar, ‘Numerical Heat Transfer and Fluid Flow’ (Hemisphere Publishing, New York, 1996).Google Scholar
  14. 14.
    J. Newman, Int. J. Heat Mass Transf. 10 (1967) 983.Google Scholar
  15. 15.
    W. Engelmaier and T. Alkire, J. Electrochem. Soc. 125 (1978) 36.Google Scholar
  16. 16.
    R. Haak, C. Ogden and D. Tench, J. Appl. Electrochem. 11 (1981) 771.Google Scholar
  17. 17.
    T. Kessler and R. Alkire, Plati. Surf. Finish. 63 (1976) 22.Google Scholar
  18. 18.
    T.W. Lee, PhD dissertation, Columbia University (1996).Google Scholar
  19. 19.
    T. Sullivan and S. Middleman, J. Electrochem. Soc. 132 (1985) 1050.Google Scholar
  20. 20.
    T. Sullivan and S. Middleman, J. Electrochem. Soc. 133 (1986) 492.Google Scholar
  21. 21.
    D.R. Turner and G.R. Johnson, J. Electrochem. Soc. 109 (1962) 798.Google Scholar
  22. 22.
    E.K. Yung, L.T. Romankiw and R.C. Alkire, J. Electrochem. Soc. 136 (1989) 206.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S.H. Chan
    • 1
  • H.Y. Cheh
    • 1
  1. 1.Department of Chemical Engineering and Applied ChemistryColumbia UniversityNew YorkUSA
  2. 2.Bristol–Myers Squibb Pharmaceutical Research InstituteNew BrunswickUSA
  3. 3.DuracellBethelUSA

Personalised recommendations