Journal of Low Temperature Physics

, Volume 123, Issue 1–2, pp 65–102 | Cite as

Polarized Nuclei in Normal and Superconducting Rhodium

  • T. A. Knuuttila
  • J. T. Tuoriniemi
  • K. Lefmann
  • K. I. Juntunen
  • F. B. Rasmussen
  • K. K. Nummila
Article

Abstract

We performed SQUID-NMR measurements on a rhodium single crystal at ultra-low nuclear-spin temperatures. With initial polarizations up to p=0.95, the antiferromagnetic tendency was clear, but surprisingly no indication of actual nuclear magnetic ordering was obtained. The lowest nuclear temperatures achieved were below 100 pK, whereas the lowest directly measured temperature was 280 pK. Double-spin-flip and evidence for triple-spin-flip resonance lines were detected, yielding direct information of the interactions between the nuclear spins. The superconducting transition of rhodium was observed with the critical values, Tc=210 μK and Bc(0)=3.4 μT. For the first time, measurements with substantially correlated nuclei were performed in the superconducting state, where the effect of the coherent electron system on the spin-lattice relaxation rate was studied. The spin-lattice relaxation time was longer in the superconducting state at all temperatures and displayed a strong dependence on nuclear susceptibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. S Oja and O. V. Lounasmaa, Nuclear magnetic ordering in simple metals at positive and negative temperatures, Rev. Mod. Phys. 69, 1–136 (1997).Google Scholar
  2. 2.
    M. T. Huiku and M. T. Loponen, Observation of a magnetic phase transition in the nuclear spin system of metallic copper at nanokelvin temperatures, Phys. Rev. Lett. 49, 1288–1291 (1982).Google Scholar
  3. 3.
    P. J. Hakonen, S. Yin, and K. K. Nummila, Phase diagram and NMR studies of antiferro-magnetically ordered polycrystalline silver, Europhys. Lett. 15, 677–682 (1991).Google Scholar
  4. 4.
    Ch. Buchal, F. Pobell, R. M. Mueller, M. Kubota, and J. R. Owers-Bradley, Superconduc-tivity of rhodium at ultralow temperatures, Phys. Rev. Lett. 50, 64–67 (1983).Google Scholar
  5. 5.
    D. E. MacLaughlin, in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull (eds.), Vol. 31, Academic, New York (1976).Google Scholar
  6. 6.
    S. Rehmann, T. Herrmannsdörfer, and F. Pobell, Interplay of nuclear magnetism and superconductivity in AuIn2, Phys. Rev. Lett. 78, 1122–1125 (1997).Google Scholar
  7. 7.
    M. Seibold, T. Herrmannsdörfer, and F. Pobell, Static nuclear magnetisation of aluminum measured by its influence on the superconducting critical field, J. Low Temp. Phys. 110, 363–368 (1998).Google Scholar
  8. 8.
    R. T. Vuorinen, P. J. Hakonen, W. Yao, and O. V. Lounasmaa, Susceptibility and relaxation measurements on rhodium metal at positive and negative spin temperatures in the nanokelvin range, J. Low Temp. Phys. 98, 449–487 (1995).Google Scholar
  9. 9.
    P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen, Nuclear antiferromagnetism in rhodium metal at positive and negative nanokelvin temperatures, Phys. Rev. Lett. 70, 2818–2821 (1993).PubMedGoogle Scholar
  10. 10.
    A. S. Oja and P. Kumar, Indirect nuclear spin interactions and nuclear ordering in metals, J. Low Temp. Phys. 66, 155–167 (1987).Google Scholar
  11. 11.
    A. Narath, A. T. Fromhold, Jr, and E. D. Jones, Nuclear spin relaxation in metals: Rhodium, palladium, and silver, Phys. Rev. 144, 428–435 (1966).Google Scholar
  12. 12.
    J. T. Tuoriniemi, T. A. Knuuttila, K. Lefmann, K. K. Nummila, W. Yao, and F. B. Rasmussen, Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures, Phys. Rev. Lett. 84, 370–373 (2000).Google Scholar
  13. 13.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976).Google Scholar
  14. 14.
    W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, and O. V. Lounasmaa, A versatile nuclear demagnetization cryostat for ultralow temperature research, J. Low Temp. Phys. 120, 121–150 (2000).Google Scholar
  15. 15.
    Material-Technologie 6 Kristalle GmbH, Im Langenbroich 20, D-52428 Jülich.Google Scholar
  16. 16.
    J. A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev. 67, 351–357 (1945).Google Scholar
  17. 17.
    F. R. Fickett, Oxygen annealing of copper: A review, Materials Science and Engineering 14, 199–210 (1974).Google Scholar
  18. 18.
    A. C. Ehrlich, Oxygen annealing of silver for obtaining low electrical resistivity: Technique and interpretation, J. Mater. Sci. 9, 1064–1072 (1974).Google Scholar
  19. 19.
    F. Pobell, Matter and Methods at Low Temperatures, Springer-Verlag (1992).Google Scholar
  20. 20.
    K. Lefmann, T. A. Knuuttila, J. E. Martikainen, L. T. Kuhn, and K. K. Nummila, Effect of heat treatment of pure and carbon-polluted rhodium samples on the low-temperature resistivity, J. Mater. Sci. 36, 839–844 (2001).Google Scholar
  21. 21.
    Vacuumschmelze GmbH, Grüner Weg 37, 63450, Hanau, Germany.Google Scholar
  22. 22.
    P. Jauho and P. V. Pirilä, Spin-lattice relaxation of nuclei due to conduction electrons at very low temperatures, Phys. Rev. B 1, 21–24 (1970).Google Scholar
  23. 23.
    P. J. Hakonen, S. Yin, and O. V. Lounasmaa, Nuclear magnetism in silver at positive and negative absolute temperatures in the low nanokelvin range, Phys. Rev. Lett. 64, 2707–2710 (1990).Google Scholar
  24. 24.
    Oxford Instruments, Ltd. Old Station Way, Eynsham OX8 1TL, UK.Google Scholar
  25. 25.
    VTT Automation, Otakaari 7 B, P.O. Box 1304, FIN-02044 VTT, Finland.Google Scholar
  26. 26.
    M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Oxford University Press (1970).Google Scholar
  27. 27.
    H. Ishii and P. J. Hakonen, Nuclear spin relaxation at ultralow temperatures, Phys. Rev. B 59, 9462–9466 (1999).Google Scholar
  28. 28.
    A. S. Oja, A. J. Annila, and Y. Takano, Investigations of nuclear magnetism in silver down to picokelvin temperatures. I, J. Low Temp. Phys. 85, 1–24 (1991).Google Scholar
  29. 29.
    A. G. Anderson, Nuclear spin absorption spectra in solids, Phys. Rev. 125, 1517–1527 (1962).Google Scholar
  30. 30.
    K. I. Juntunen, Effects of eddy currents on the NMR spectra of a highly polarized metal sample, Master's thesis, Helsinki University of Technology (2000).Google Scholar
  31. 31.
    P. J. Hakonen and S. Yin, Investigations of nuclear magnetism in silver down to picokelvin temperatures. II, J. Low Temp. Phys. 85, 25–65 (1991).Google Scholar
  32. 32.
    J. P. Ekström, J. F. Jacquinot, M. T. Loponen, J. K. Soini, and P. Kumar, Nuclear spin interaction in copper: NMR at high polarization and in low fields, Physica B 98, 45–52 (1979).Google Scholar
  33. 33.
    P. L. Moyland, P. Kumar, J. Xu, and Y. Takano, Coupling of the Larmor precession to the correlated motion of pairs of nuclear spins in noble metals, Phys. Rev. B 48, 14020–14022 (1993).Google Scholar
  34. 34.
    H. Cheng, Spin absorption of solids, Phys. Rev. 124, 1359–1367 (1961).Google Scholar
  35. 35.
    A. G. Anderson, Nonresonant nuclear spin absorption in lithium, sodium, and aluminium, Phys. Rev. 115, 863–868 (1959).Google Scholar
  36. 36.
    Yong-Jihn Kim and A. W. Overhauser, Magnetic impurities in superconductors: A theory with different predictions, Phys. Rev. B 49, 15799–15812 (1994).Google Scholar
  37. 37.
    L. C. Hebel and C. P. Slichter, Nuclear spin relaxation in normal and superconducting aluminum, Phys. Rev. 113, 1504–1519 (1959).Google Scholar
  38. 38.
    T. A. Knuuttila, J. T. Tuoriniemi, and K. Lefmann, Relaxation of polarized nuclei in superconducting rhodium, Phys. Rev. Lett. 85, 2573–2576 (2000).Google Scholar
  39. 39.
    K. K. Nummila, J. T. Tuoriniemi, R. T. Vuorinen, K. Lefmann, A. Metz, and F. B. Rasmussen, Neutron diffraction studies of nuclear magnetic ordering in silver, J. Low Temp. Phys. 112, 73–116 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • T. A. Knuuttila
    • 1
  • J. T. Tuoriniemi
    • 1
  • K. Lefmann
    • 2
  • K. I. Juntunen
    • 1
  • F. B. Rasmussen
    • 3
  • K. K. Nummila
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Dept. Cond. Matt. Phys. and Chem., RisøNational LaboratoryRoskildeDenmark
  3. 3.Niels Bohr InstituteUniversity of CopenhagenKøbenhavn ØDenmark

Personalised recommendations