Journal of Nanoparticle Research

, Volume 3, Issue 2–3, pp 227–235

Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions

  • Tadafumi Adschiri
  • Yukiya Hakuta
  • Kiwamu Sue
  • Kunio Arai


Hydrothermal synthesis of CeO2 and AlO(OH) were conducted using a flow type apparatus over the range of temperature from 523 to 673 K at 30 MPa. Nanosize crystals were formed at supercritical conditions. The mechanism of nanoparticle formation at supercritical conditions was discussed based on the metal oxide solubility and kinetics of the hydrothermal synthesis reaction. The reaction rate of Ce(NO3)3 and Al(NO3)3 was evaluated using a flow type reactor. The Arrhenius plot of the first order rate constant fell on a straight line in the subcritical region, while it deviated from the straight line to the higher values above the critical point. The solubility of Ce(OH)3 and AlO(OH) was estimated by using a modified HKF model in a wide range of pH and temperature. In acidic conditions, where hydrothermal synthesis reaction is concerned, solubility gradually decreased with increasing temperature and then drastically dropped above the critical point. The trend of the solubility and the kinetics around the critical point could be explained by taking account of the dielectric constant effect on the reactions. There are two reasons why nanoparticle are formed at supercritical conditions. Larger particles are produced at subcritical conditions due to Ostwald ripening; that could not be observed in supercritical water because of the extremely low solubility. Second reason is the faster nucleation rate in supercritical water because of the lower solubility and the extremely fast reaction rate.

supercritical water hydrothermal synthesis rapid and continuous production nanoparticles metal oxide solubility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adschiri T., Y. Hakuta & K. Arai, 2000.Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions.Ind.Eng.Chem.Res. 39(12), 4901.Google Scholar
  2. Adschiri T.,Y. Hakuta, K. Kanamura & K. Arai, 2001.Continuous Production of LiCoO2 Fine Crystals for Lithium Batteries by Hydrothermal Synthesis under Supercritical Condition.J.High Pressure Research, 20(1-6), 373.Google Scholar
  3. Adschiri T., 1998.Application of SCFs for power preparation.Kona, 16, 89.Google Scholar
  4. Adschiri T., K. Kanazawa & K. Arai, 1992a.Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water.J.Am.Ceram.Soc. 75, 2615.Google Scholar
  5. Adschiri T., K. Kanazawa & K. Arai, 1992b.Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water.J.Am.Ceram.Soc. 75, 1019.Google Scholar
  6. Amis E.S. & J.F. Hinton, 1973.Solvent Effects on Chemical Phenomena, Academic Press.Google Scholar
  7. Brown N., 1989.Hydrothermal Crystallization of α-alumina monohydrate in the presence of copper ions.J.Cryst.Growth, 97, 387.Google Scholar
  8. Buining P.A., C. Pathmamanoharan, M. Bosboom, M.B.H. Jansen & H.N.W. Lekkerkerker, 1990.Effect of Hydrothermal Conditions on the Morphology of Colloidal Boehmite Particles: Implication for Fibril Formation and Monodispersity.J.Am.Ceram.Soc. 73(8), 2185.Google Scholar
  9. Bungert B., G. Sadowski & W. Arlt, 1998.Separation and material processing in solutions with dense gases.Ind.Eng.Chem.Res. 37(8), 3208.Google Scholar
  10. Dawson W.J., 1988.Hydrothermal Synthesis of Advanced Ceramic Powders.Am.Cearm.Soc.Bull. 67, 1673.Google Scholar
  11. Haar L., J.S. Gallagher & G.S. Kell, 1984.NBC/NRC Steam Tables, Hemisphere, Washington, DC, 1984.Google Scholar
  12. Hakuta Y., K. Seino, H. Ura, T. Adschiri, H. Takizawa & K. Arai, 1999a.Production of phosphor (YAG:Tb) fine particles by hydrothermal synthesis in supercritical water, J.Mater.Chem. 9(10), 2671.Google Scholar
  13. Hakuta Y., T. Adschiri, H. Hirakoso & K. Arai, 1999b.Chemical Equilibria and Particle Morphology of Boehmite (AlOOH) in Sub and Supercritical Water.Fluid Phase Equilibria 158–160, 733.Google Scholar
  14. Hakuta Y.,T. Adschiri, T. Suzuki, K. Seino & K. Arai, 1998a.Flow Method for Rapidly Producing Single Phase Barium Hexaferrite Particles in Supercritical Water.J.Am.Ceram.Soc. 81(9), 2461.Google Scholar
  15. Hakuta Y., H. Terayama, S. Onai, T. Adschiri & K. Arai, 1998b.Production of Ultra Fine Ceria Particles by Hydrothermal Synthesis under Supercritical Conditions.J.Mater.Sci.Lett. 17, 1211.Google Scholar
  16. Hearn B., M. Hunt & A. Hayward, 1969.Solubility of Cupric Oxide in Pure Subcritical and Supercritical Water.J.Chem.Eng.Data, 14, 442.Google Scholar
  17. Hirano M. & E. Kato, 1996.The Hydrothermal Synthesis of Ultra-fine cerium (IV) oxide powders.J.Mater.Sci.Lett. 15, 1249.Google Scholar
  18. Johnson J.W. & D. Norton, 1991.Critical phenomena in hydrothermal systems: State, thermodynamic, electrostatic, and transport properties of H2O in the critical region.Am.J.Sci. 291, 541.Google Scholar
  19. Matijevic E. & W.P. Hsu, 1987.Preparation and Properties Monodispersed Colloidal Particles of Lanthanide Compounds 1.Gadolinium, Europium, Terbium, Samarium, and Cerium(III).J.Col.Interface Sci. 118(2), 506.Google Scholar
  20. Palaban R.T. & K.S. Pitzer, 1987.Thermodynamics of concentrated electrolytes mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O.Geochim.Cosmochim.Acta 51, 2429.Google Scholar
  21. Reverchon E., 1999.Supercritical antisolvent precipitation of micro-and nano-particles.J.Supercrit.Fluids 15(1), 1.Google Scholar
  22. Scott W.B. & E. Matijevic, 1978.Preparation of uniform Particles by hydrolysis of Aluminum Chloride and Perchlorate Salts.J.Colloid, Interface Sci. 66(3), 447.Google Scholar
  23. Shock E.L., E.H. Oelkers, J.W. Johnson, D.A. Sverjensky & H.C. Helgeson, 1992.Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Effective electrostatic radii to 1000°C and 5 kb.J.Chem.Soc.Faraday Trans. 88, 803.Google Scholar
  24. Sue K., T. Adschiri & K. Arai, 2001.Estimation of Metal Oxide Solubility in Sub-and Supercritical Water.Proc.Book Joint 6th ISHR & 4th ICSTR, Kochi, Japan.(in press)Google Scholar
  25. Sue K., Y. Hakuta, R.L. Smith, Jr., T. Adschiri & K. Arai, 1999.Solubility of Lead (II) Oxide and Copper (II) Oxide in Subcritical and Supercritical Water.J.Chem.Eng.Data, 44, 1422.Google Scholar
  26. Sverjensky D.A., E.L. Shock & H.C. Helgeson, 1997.Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb.Geochim.Cosmochim.Acta. 61, 1359.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Tadafumi Adschiri
    • 1
  • Yukiya Hakuta
    • 1
  • Kiwamu Sue
    • 1
  • Kunio Arai
    • 1
  1. 1.Department of Chemical EngineeringTohoku UniversityAramaki-Aza, Aoba-ku, SendaiJapan

Personalised recommendations