, Volume 449, Issue 1–3, pp 241–247

Major claws make male fiddler crabs more conspicuous to visual predators: a test using human observers

  • Joana M. Jordão
  • Rui F. Oliveira


One of the possible costs of the male fiddler crabs enlarged claw can be conspicuousness to predators. This hypothesis was tested using human observers as a model of visual predators. In the European fiddler crab, Uca tangeri Eydoux, the males' major claw is white contrasting with the orange-brownish colour of the carapace and of the feeding claw, and the mudflat background. The following morphotypes were created from close-up photographs taken in nature using an image processing software: male, male without claw, female, female with enlarged claw, male with enlarged claw of the same colour of the feeding claw, male with 75% sized claw, male with 50% sized claw. These morphotypes were then presented in a randomised order to students, using a psychology test software, which allows the measurement of response time in msec. The subjects were allowed to look at the images for an unlimited amount of time, until they detected the individual or until they decided to pass on to another image. Backgrounds (i.e. mudflat picture) without individuals were also presented as a control. Male crabs were detected significantly sooner than females. When we compared males with the claw removed with females with an enlarged claw added, the pattern is reversed and the latter are detected significantly faster. Thus, the enlarged claw seems to be the key feature that makes the individuals more conspicuous. Size and colour seem to be the main aspects of the claw's conspicuousness. The data of these experiments support the initial prediction of males being more conspicuous than females because of their enlarged claw. The possible costs and benefits of this trait, related to predation, are discussed.

visual signal conspicuousness predators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, M., 1994. Sexual Selection. Princeton University Press. New Jersey.Google Scholar
  2. Backwell, P. R. Y. & N. I. Passmore, 1996. Development of asymmetry in the fiddler crab Uca cumulanta, Crane 1943 (Decapoda: Brachyura). Crustaceana, 34: 294–300.Google Scholar
  3. Backwell, P. R. Y., P. D. O'Hara & J. H. Christy, 1998. Prey availability and selective foraging in shorebirds. Anim. Behav, 55: 1659–1667.Google Scholar
  4. Bennet, A. T. D. & I. C. Cuthill, 1994. Ultraviolet vision in birds: what is its function? Vision Res, 34: 1471–1478.Google Scholar
  5. Bennett, A. T. D., I. C. Cuthill & K. J. Norris, 1994. Sexual selection and the mismeasure of color. Am. Nat. 144: 848–860.Google Scholar
  6. Bildstein, K. L., S. G. McDowell & I. L. Brisbin, 1989. Consequences of sexual dimorphism in sand fiddler crabs, Uca pugilator: differential vulnerability to avian predation. Anim. Behav. 37: 133–139.Google Scholar
  7. Bradbury, J. W. & S. L. Vehrencamp, 1998. Principles of animal communication. Sinauer Associates, Sunderland, MA.Google Scholar
  8. Cade, W., 1975. Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190: 1312–1313.Google Scholar
  9. Caravello, H. E. & G. N. Cameron, 1987. The effects of sexual selection on the foraging behaviour of the Gulf Coast fiddler crab, Uca panacea. Anim. Behav. 35: 1864–1874.Google Scholar
  10. Christy, J. H., 1983. Female choice in the resource-defense mating system of the sand fiddler crab, Uca pugilator. Behav. Ecol. Sociobiol. 12: 169–180.Google Scholar
  11. Christy, J. H., 1987. Female choice and the breeding behavior of the fiddler crab Uca beebei. J. Crust. Biol., 7: 624–635.Google Scholar
  12. Clinton, W. L. & B. J. Le Boeuf, 1993. Sexual selection's effects on male life history and the pattern of male mortality. Ecology 74: 1884–1892.Google Scholar
  13. Crane, J., 1967. Combat and its ritualization in fiddler crabs (Ocypodidae) with special reference to Uca rapax. Zoologica 52: 49–76.Google Scholar
  14. Crane, J., 1975. Fiddler crabs of the world. (Ocypodidae, Genus Uca). Princeton University Press, New Jersey.Google Scholar
  15. Cronin, T. W. & R. B. Forward Jr., 1988. The visual pigments of crabs I. spectral characteristics. J. Comp. Physiol. A 162: 463–478.Google Scholar
  16. Cummins, D. R. & T. H. Goldsmith, 1981. Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol. A 142: 199–202.Google Scholar
  17. Dusenbery, D. B., 1992. Sensory Ecology. W. H. Freeman & Co, New York.Google Scholar
  18. Endler, J. A., 1987. Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). Anim. Behav. 35: 1376–1385.Google Scholar
  19. Endler, J. A., 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139: S125–S153.Google Scholar
  20. Ens, B. J., M. Klassen & L. Zwarts, 1993. Flocking and feeding in the fiddler crab (Uca tangeri): prey availability as risk-taking behaviour. Neth. J. Sea Res. 31: 477–494.Google Scholar
  21. Faria, M. M., 1994. Aspectos do comportamento das bocas-decavalete Uca tangeri (Eydoux), (Ocypodidae, Brachyura) no Parque Natural da Ria Formosa. Parque Natural da Ria Formosa.Google Scholar
  22. Finger, E. & D. Burkhardt, 1994. Biological aspects of bird colouration and avian colour vision including ultraviolet range. Vision Res. 34: 1509–1514.Google Scholar
  23. Formanowicz, D. R., Jr. & E. D. Brodie, Jr., 1988. Predation risk and forager escape tactics. Anim. Behav. 36: 1836–1860.Google Scholar
  24. Greenspan, B. N., 1980. Male size and reproductive success in the communal courtship system of the fiddler crab Uca rapax. Anim. Behav. 28: 387–392.Google Scholar
  25. Houde, A. E., 1997. Sex, Color, and Mate Choice in Guppies. Princeton University Press, Princeton, N.J.Google Scholar
  26. Hyatt, G., 1975. Physiological and behavioural evidence for colour discrimination by fiddler crabs (Brachyura, Ocypodidade, genus Uca). In Vernberg, F. J., (ed.), Physiological Ecology of Estuarine Organisms. Univ. South Carolina Press, Columbia: 333–365Google Scholar
  27. Hyatt, G. W., 1977. Field studies of size dependent changes in waving display and other behaviour in the fiddler crab, Uca pugilator, Bosc (Brachyura, Ocypodidae). Mar. Behav. Physiol. 4: 283–292.Google Scholar
  28. Land, M. & J. Layne, 1995. The visual control of behaviour in fiddler crabs. I. Resolution, thresholds and the role of the horizon. J. Comp. Physiol. A 177: 81–90.Google Scholar
  29. Latruffe, C., P. K. McGregor & R. F. Oliveira, 1999. Visual signalling and sexual selection in male fiddler crabs, Uca tangeri. Mar. Ecol. Prog. Ser. 189: 233–240.Google Scholar
  30. Layne, J., M. Land & J. Zeil, 1997. Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J. mar. biol. Ass. U.K. 77: 43–54.Google Scholar
  31. Leggett, L. M. W., 1979. A retinal substrate for colour discrimination in crabs. J. Comp. Physiol. A 133: 159–166.Google Scholar
  32. Martin, F. G. & M. I. Mote, 1982. Colour receptors in marine crustaceans: a second spectral class of retinular cell in the compound eyes of Callinectes and Carcinus. J. Comp. Physiol. A 145: 549–554.Google Scholar
  33. Murai, M., S. Goshima & Y. Nakasone, 1983. Adaptive droving behavior observed in the fiddler crab Uca vocans vocans. Mar. Biol. 76: 159–164.Google Scholar
  34. Oliveira, R. F & M. R. Custódio, 1998. Claw size, waving display and female choice in the European fiddler crab, Uca tangeri. Ethol. Ecol. Evol. 10: 241–251.Google Scholar
  35. Oliveira, R. F., J. L. Machado, J. M. Jordão, F. R. L. Burford, C. Latruffe & P. K. McGregor, 2000. Human exploitation of male fiddler crab claws: behavioural consequences and implications for conservation. Anim. Conserv. 3: 1–5.Google Scholar
  36. Rosenberg, M. S., 1997. Evolution of shape differences between the major and minor chelipeds of Uca pugnax (Decapoda: Ocypodidae). J. Crust. Biol. 17: 52–59.Google Scholar
  37. Salmon, M., 1984. The courtship, aggression and mating system of a 'primitive' fiddler crab (Uca vocans: Ocypodidae). Trans. Zool. Soc. London 37: 1–50.Google Scholar
  38. Scott, S. & M. I. Mote, 1974. Spectral sensitivity in some marine Crustacea. Vision Res. 14: 659–663.Google Scholar
  39. Thurman, C. L., 1990. Adaptive coloration in Texas fiddler crabs (Uca). In Adaptive coloration in invertebrates, Proceeding of a symposium sponsored by the American Society of Zoologists 109–126.Google Scholar
  40. Valiela, I., D. F. Babiec, W. Atherton, S. Seitzinger & C. Krebs, 1974. Some consequences of sexual dimorphism: feeding in male and female fiddler crabs, Uca pugnax (Smith). Biol. Bull. 147: 652–660.Google Scholar
  41. Vehrencamp, S. L., J. W. Bradbury & R. M. Gibson, 1989. The energetic cost of display in male sage grouse. Anim. Behav. 38: 885–896.Google Scholar
  42. Von Hagen, H.-O., 1962. Freilandstudien zur Sexual und Fortp-flanszungsbiologie von Uca tangeri in Andalusien. Z. Morph. Ökol. Tiere 51: 611–725.Google Scholar
  43. Weygoldt, P., 1977. Communication in crustaceans and arachnids. In Sebock, T. A. (ed.), How Animals Communicate, Univ. Indiana Press, Indiana: 303–333.Google Scholar
  44. Zeil, J., G. Nalbach & H.-O. Nalbach, 1986. Eyes, eye stalks and the visual world of semi-terrestrial crabs. J. Comp. Physiol. A 159: 801–811.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Joana M. Jordão
    • 1
  • Rui F. Oliveira
    • 2
  1. 1.Unidade de Investigação em Eco-EtologiaInstituto Superior de Psicologia AplicadaLisboaPortugal
  2. 2.Unidade de Investigação em Eco-EtologiaInstituto Superior de Psicologia AplicadaLisboaPortugal

Personalised recommendations