, Volume 444, Issue 1–3, pp 71–84 | Cite as

The interaction between water movement, sediment dynamics and submersed macrophytes

  • J. D. Madsen
  • P. A. Chambers
  • W. F. James
  • E. W. Koch
  • D. F. Westlake


Water movement in freshwater and marine environments affects submersed macrophytes, which also mediate water movement. The result of this complex interaction also affects sediment dynamics in and around submersed macrophyte beds. This review defines known relationships and identifies areas that need additional research on the complex interactions among submersed macrophytes, water movement, and sediment dynamics. Four areas are addressed: (1) the effects of water movement on macrophytes, (2) the effects of macrophyte stands on water movement, (3) the effects of macrophyte beds on sedimentation within vegetated areas, and (4) the relationship between sediment resuspension and macrophytes. Water movement has a significant effect on macrophyte growth, typically stimulating both abundance and diversity of macrophytes at low to moderate velocities, but reducing growth at higher velocities. In turn, macrophyte beds reduce current velocities both within and adjacent to the beds, resulting in increased sedimentation and reduced turbidity. Reduced turbidity increases light availability to macrophytes, increasing their growth. Additionally, macrophytes affect the distribution, composition and particle size of sediments in both freshwater and marine environments. Therefore, establishment and persistence of macrophytes in both marine and freshwater environments provide important ecosystem services, including: (1) improving water quality; and (2) stabilizing sediments, reducing sediment resuspension, erosion and turbidity.

current velocity hydrology sediment resuspension sediment deposition sediment stabilization submersed aquatic vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, J. D. & A. Okubo, 1993. Reduced mixing in a marine macrophyte canopy. Funct. Ecol. 7: 305–309.Google Scholar
  2. Almasi, M. N., C. M. Hoskin, J. K. Reed & J. Milo, 1987. Effects of natural and artificial Thalassia on rates of sedimentation. J. Sedim. Petrol. 57: 901–906.Google Scholar
  3. Almquist, J. I. & L. Kautsky, 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions in the northern Baltic proper. Aquat. Bot. 52:205–216.Google Scholar
  4. Anderson, M. R. & J. Kalff. 1986. Nutrient limitation of Myriophyllum spicatum grown in situ. Freshwat. Biol. 16: 735–743.Google Scholar
  5. Barko, J. W., M. S. Adams & N. S. Clesceri, 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J. Aquat. Plant Manage. 24: 1–10.Google Scholar
  6. Barko, J. W. & R. M. Smart, 1981. Sediment-based nutrient of submersed macrophytes. Aquat. Bot. 60: 877–887.Google Scholar
  7. Barko, J. W. & R. M. Smart, 1983. Effects of organic matter additions to sediment on the growth of aquatic plants. J. Ecol. 71: 161–175.Google Scholar
  8. Barko, J.W. & R. M. Smart, 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340.Google Scholar
  9. Barrat-Segretain, M. H. & C. Amoros, 1995. Influence of flood timing on the recovery of macrophytes in a former river channel. Hydrobiologia 316: 91–101.Google Scholar
  10. Barrat-Segretain, M. H. & C. Amoros, 1996. Recovery of riverine vegetation after experimental disturbance: a field test of the patch dynamics concept. Hydrobiologia 321: 53–68.Google Scholar
  11. Bengtsson, L. & T. Hellström, 1990. Redistribution and accumulation of sediments in Lake Erkin. Aq. Fen. 20: 125–133.Google Scholar
  12. Bengtsson, L. & T. Hellström, 1992. Wind-induced resuspension in a shallow lake. Hydrobiologia 241: 163–172.Google Scholar
  13. Best, E. P. H., C. P. Buzzelli, S. M. Bartell, R. L. Wetzel & W. A. Boyd, R. D. Doyle & K. R. Campbell, 2001. Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia: 444: 43–70.Google Scholar
  14. Biggs, B. J. F., 1996. Hydraulic habitat of plants in streams. Regul. Riv. Res. and Manage. 12: 131–144.Google Scholar
  15. Bilby, R., 1977. Effects of a spate on the macrophyte vegetation of a stream pool. Hydrobiologia 56: 109–112.Google Scholar
  16. Brewer, C. A. & M. Parker, 1990. Adaptations of macrophytes to life in moving water: Upslope limits and mechanical properties of stems. Hydrobiologia 194: 133–142.Google Scholar
  17. Butcher, R. W., 1933. Studies on the ecology of rivers. I. On the distribution of macrophytic vegetation in the rivers of Britain. J. Ecol. 21: 58–91.Google Scholar
  18. Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.Google Scholar
  19. Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. aquat. Sci. 41: 1763–1767.Google Scholar
  20. Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl. 1: 249–257.Google Scholar
  21. Cowan, J. L. W., J. R. Pennock & W. R. Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (U.S.A.): regulating factors and ecological significance. Mar. Ecol. Prog. Ser. 141: 229–245.Google Scholar
  22. Dauby, P. D., A. J. Bale, N. Bloomer, C. Canon, R. D. Ling, A. Norro, J. E. Robertson, A. Simon, J. M. Theate, A. J. Watson & M. Frankingnoulle, 1995. Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar. Ecol. Progr. Ser. 126: 233–246.Google Scholar
  23. Dawes, C. J., S. S. Bell, R. A. Davis Jr, E. D. McCoy, H. R. Mushinsky & J. L. Simon, 1995. Initial effects of hurricane Andrew on the shoreline habitats of southwestern Florida. J. Coast. Res. 21: 103–110.Google Scholar
  24. Dawson, F. H., E. Castellano, & M. Ladle, 1978. The concept of species succession in relation to river vegetation and management. Verh. int. Ver. Limnol. 20: 1429–1434.Google Scholar
  25. Dawson, F. H. & W. N Robinson, 1984. Submersed macrophytes and the hydraulic roughness of a lowland chalkstream. Verh. int. Ver. Limnol. 22: 1944–1948.Google Scholar
  26. Delf, E. M., 1932. Experiments with the stipes of Fucus and Laminaria. J. exp. Biol. 9: 300–313.Google Scholar
  27. Dennison, W. C., 1979. Light adaptations of plants: a model based on the seagrassZostera marina L. MS. Thesis, Univ. Alaska, Fairbanks: 70 pp.Google Scholar
  28. Denny, M.W., 1988. Biology and the Mechanics of theWave-Swept Environment. Princeton University Press, New Jersey: 329 pp.Google Scholar
  29. Dieter, C. D., 1990. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467–473.Google Scholar
  30. Dillon, P. J., R.D. Evans & L. A. Molot, 1990. Retention and resuspension of phosphorus, nitrogen, and iron in a central Ontario lake. Can. J. Fish. aquat. Sci. 47: 1269–1274.Google Scholar
  31. Doyle, R. D., 2000. Effects of Navigation on Aquatic Plants: Effects of Sediment Resuspension and Deposition on Plant Growth and Reproduction. Upper Mississippi River - Illinois Waterway System Navigation Study, ENV Report, In press.Google Scholar
  32. Dudgeon, S. R. & A. S. Johnson, 1992. Thick vs. thin: thallus morphology and tissue mechanics influence differential drag and dislodgement of two co-dominant seaweeds. J. exp. mar. Biol. Ecol. 165: 23–43.Google Scholar
  33. Elwany, M. H. S., W. C. O'Reilly, R. T. Guza & R. E. Flick, 1995. Effects of Southern California kelp beds on waves. J. Waterw. Port Coast. Oc. Engin. 121: 143–150.Google Scholar
  34. Eleuterius, L. N., 1975. Submergent vegetation for bottom stabilization. Estuar. Res. 2: 439–456.Google Scholar
  35. Fanning, K. A., K. L. Carder & P. R. Betzer, 1982. Sediment resuspension by coastal waters: a potential for nutrient re-cycling on the oceans margins. Deep Sea Res. 29: 953–965.Google Scholar
  36. Fonseca, M., 1996. The role of seagrasses in nearshore sedimentary processes: a review. In Nordstrom, K. & C. T. Roman (eds), Estuarine Shores: Evolution, Environments and Human Alterations John Wiley & Sons, London: 261–286.Google Scholar
  37. Fonseca, M. S. & J. A. Cahalan, 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. coast. shelf Sci. 35: 565–576.Google Scholar
  38. Fonseca, M. S. & J. S. Fisher, 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar. Ecol. Prog. Ser.29: 15–22.Google Scholar
  39. Fonseca, M. S. & W. J. Kenworthy, 1987. Effects of current on photosynthesis and distribution of seagrasses. Aquat. Bot. 27: 59–78.Google Scholar
  40. French, T. D., 1995. Environmental Factors Regulating the Biomass and Diversity of Aquatic Macrophyte Communities in Rivers. M.Sc. thesis, University of Alberta, Edmonton, Alberta, Canada: 145 pp.Google Scholar
  41. French, T. D. & P. A. Chambers, 1996. Habitat partitioning in riverine macrophyte communities. Freshwat. Biol. 36: 509–520.Google Scholar
  42. Gambi, M. C., A. R. M. Nowell & P. A. Jumars, 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. 61: 159–169.Google Scholar
  43. Gerard, V. A., 1987. Hydrodynamic streamlining of Laminaria saccharina Lamour. in response to mechanical stress. J. exp. mar. Biol. Ecol. 107: 237–244.Google Scholar
  44. Gonen, Y., E. Kimmel & M. Friedlander, 1995. Diffusion boundary layer transport in Gracilaria conferta (Rhodophyta). J. Phycol. 31: 768–773.Google Scholar
  45. Grady, J. R., 1981. Properties of seagrass and sand flat sediments from the intertidal zone of St. Andrew Bay, Florida. Estuaries 4: 335–344.Google Scholar
  46. Gregg, W. W. & F. L. Rose, 1982. The effects of aquatic macrophytes on the stream micro-environment. Aquat. Bot. 14: 309–324.Google Scholar
  47. Grizzle, R. E., F. T. Short, C. R. Newell, H. Hoven & L. Kindblom, 1996. Hydrodynamically induced synchronous waving of seagrasses: monami and its possible effects on larval mussel settlement. J. exp. mar. Biol. Ecol. 206: 165–177.Google Scholar
  48. Gust, G. & V. Muller, 1997. Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In Burt, N., R. Parker & J. Watts (eds), Cohesive Sediments. John Wiley & Sons, London: 149–174.Google Scholar
  49. Håkanson, L., 1977. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.Google Scholar
  50. Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317: 209–220.Google Scholar
  51. Hanson, M. A. & M. G. Butler, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Can. J. Fish. aquat. Sci. 51: 1180–1188.Google Scholar
  52. Harlin, M.M., B. Thorne-Miller & J. C. Boothroyd, 1982. Seagrasssediment dynamics of a flood-tidal delta in Rhode Island (USA). Aquat. Bot. 14: 127–138.Google Scholar
  53. Haslam, S. M., 1978. River Plants: The Macrophytic Vegetation of Watercourses. Cambridge University Press, Cambridge: 396 pp.Google Scholar
  54. Heller, D. Y., 1987. Sediment transport through seagrass beds. M.S. Thesis, University of Virginia, Charlottesville: 112 pp.Google Scholar
  55. Hellström, T., 1991. The effect of resuspension on algal production in a shallow lake. Hydrobiologia 213: 183–190.Google Scholar
  56. Henry, C. P., C. Amoros & G. Bornette, 1996. Species traits and recolonization processes after flood disturbances in riverine macrophytes. Vegetatio 122: 13–27.Google Scholar
  57. Hosper, S. H., 1989. Biomanipulation, new perspectives for restoration of shallow, eutrophic lakes in The Netherlands. Hydrobiol. Bull. 23: 5–10.Google Scholar
  58. Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200/201: 523–534.Google Scholar
  59. Hurd, C. L., P. J. Harrison & L. D. Druehl, 1996. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Mar. Biol. 126: 205–214.Google Scholar
  60. Hurd, C. L., C. L. Stevens, B. Laval, G. A. Lawrence & P. J. Harrison, 1997. Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnol. Oceanogr. 42: 156–163.Google Scholar
  61. Jaffe, M. J., 1976. Thigmomorphogenesis: a detailed characterization of the response of beans (Phaseolus vulgaris L.) to mechanical stimulation. Zeitschr. Pflanzenphys. 77: 437–453.Google Scholar
  62. James, W. F. & J. W. Barko, 1991. Influences of submersed aquatic macrophytes on zonation of sediment accretion and composition, Eau Galle Reservoir, Wisconsin. Technical Report A-91–1, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 23 pp.Google Scholar
  63. James, W. F. & J. W. Barko, 1994. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake Res. Manage. 10: 95–102.Google Scholar
  64. James, W. F. & J. W. Barko, 1995. Wind-induced sediment resuspension and export inMarsh Lake, western Minnesota. Technical Report W-95–1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS: 54 pp.Google Scholar
  65. Jumars, P., J. Eckman & E. W. Koch, 2000. Direct and indirect effects of fluid dynamics on macroscopic benthos. In Boudreau, B.P. & B. B. Jorgensen (eds), The Benthic Boundary Layer: Transport Processes and Biogeochemistry, Oxford University Press, In press.Google Scholar
  66. Keddy, P. A., 1982. Quantifying a within-lake gradients of wave energy: interrelationships of wave energy, substrate particle size and shoreline plants in Axe Lake, Ontario. aquat. Bot. 14: 41–58.Google Scholar
  67. Kenworthy, W. J., J. C. Zieman & G. W. Thayer, 1982. Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (U.S.A.). Oecologia 54: 152–158.Google Scholar
  68. Koch, E. W., 1993a. Hydrodynamics of flow through seagrass canopies: biological, physical and geochemical interactions. Ph.D. Dissertation, Univ. South Florida, St. Petersburg, 123 pp.Google Scholar
  69. Koch, E. W., 1993b. The effects of water flow on photosynthetic processes of the alga Ulva lactuca L. Hydrobiologia 260/261: 457–462.Google Scholar
  70. Koch, E. W., 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Mar. Biol. 118: 767–776.Google Scholar
  71. Koch, E. W., 1996. Hydrodynamics of a shallow Thalassia testudinum bed in Florida, U.S.A. In Kuo, J., R. C. Phillips, D.I. Walker & H. Kirkman (eds), Seagrass Biology: Proceedings of an International Workshop: 105–109.Google Scholar
  72. Koch, E. W., 1999. Sediment resuspension in a shallow Thalassia testudinum bed. Aquat. Bot. 65: 269–280.Google Scholar
  73. Koch, E.W., 2000. Beyond light: physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, In press.Google Scholar
  74. Koch, E. W. & G. Gust, 1999. Water flow in tide and wave dominated beds of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 184: 63–72.Google Scholar
  75. Koehl, M. A. R., 1984. How do benthic organisms withstand moving water? Am. Zool. 24: 57–70.Google Scholar
  76. Koehl, M. A. R., 1986. Seaweeds in moving water: form and mechanical function. In Givnich, T.J. (ed), On the Economy of Plant Form and Function Cambridge Univ. Press, New York: 603–634.Google Scholar
  77. Koehl, M. A. R. & S. A. Wainwright, 1977. Mechanical adaptions of a giant kelp. Limnol. Oceanogr.22: 1067–1071.Google Scholar
  78. Kraemer, G. P. & D. J. Chapman, 1991. Biomechanics and alginic acid composition during hydrodynamic adaptation by Egregia menziesii (Phaeophyta) juveniles. J. Phycol. 27: 47–53.Google Scholar
  79. Kristensen, P., M. Søndergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.Google Scholar
  80. Ladle, M. & H. Casey, 1971. Growth and nutrient relationships of Ranunculus penicillatus var. calcareus in a small chalk stream. Proc. European Weed Res. Soc. 3rd Intern. Symp. on Aquat. Weeds: 53–65.Google Scholar
  81. Leonard, L. A. & M. E. Luther, 1995. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr. 40: 1474–1484.Google Scholar
  82. Lodge, D. M., D. P. Krabbenhoft & R. G. Striegl, 1989. A positive relationship between groundwater velocity and submersed macrophyte biomass in Sparkling Lake, Wisconsin. Limnol. Oceanogr. 34: 235–239.Google Scholar
  83. Losee, R. F. & R. G. Wetzel, 1988. Water movement within submersed littoral vegetation. Verh. int. Ver. Limnol. 23: 62–66.Google Scholar
  84. Losee, R. F. & R. G. Wetzel, 1993. Littoral flow rates within and around submersed macrophyte communities. Freshwat. Biol. 29: 7–17.Google Scholar
  85. Maceina, M. J. & D. M. Soballe, 1990. Wind-related limnological variation in Lake Okeechobee, FL. Lake Reserv. Manage. 6: 93–100.Google Scholar
  86. Machata-Wenninger, C. & G. A. Janauer, 1991. The measurement of current velocities in macrophyte beds. Aquat. Bot. 39: 221–230.Google Scholar
  87. Madsen, J. D., 1991. Resource allocation at the individual plant level. Aquat. Bot. 41: 67–86.Google Scholar
  88. Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, L. W. Eichler & C.W. Boylen, 1996. The aquatic macrophyte community of Onondaga Lake: Field survey and plant growth bioassays of lake sediments. Lake Res. Manage. 12: 73–79.Google Scholar
  89. Madsen, T. V., H. O. Enevoldsen & T. B. Jørgensen, 1993. Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Pl. Cell Environ. 16: 317–322.Google Scholar
  90. Madsen, T. V. & M. Søndergaard, 1983. The effects of current velocity on the photosynthesis of Callitriche stagnalis Scop. Aquat. Bot. 15: 187–193.Google Scholar
  91. Madsen, T. V. & E. Warncke, 1983. Velocities of currents around and within submerged aquatic vegetation. Arch. Hydrobiol. 97: 389–394.Google Scholar
  92. Marshall, E. J. P. & D. F. Westlake, 1990. Water velocities around water plants in chalk streams. Folia Geobot. Phytotax. 25: 279–289.Google Scholar
  93. Middleton, G. V. & J. B. Southard, 1984. Mechanics of Sediment Movement. Soc. Econ. Paleontol. Mineral., 401 pp.Google Scholar
  94. Minckley, W. L., 1963. The ecology of a spring stream, Doe Run, Meade County, Kentucky. Wildl. Monogr. 11: 1–124.Google Scholar
  95. Mork, M., 1996. The effect of kelp in wave damping. Sarsia 80: 323–327.Google Scholar
  96. Newall, A. M. & J. M. R. Hughes, 1995. Microflow environments of aquatic plants in flowing water wetlands. In Hughes, J. M. R. & A. L. Heathwaite (eds), Hydrology and Hydrochemistry of British Wetlands Wiley, Chichester: 363–381.Google Scholar
  97. Oliver, H. R., 1971. Wind profiles in and above a forest canopy. Quart. J. Royal Meteorol. Soc. 97: 548–553.Google Scholar
  98. Petticrew, E. L. & J. Kalff, 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. aquat. Sci. 49: 2483–2489.Google Scholar
  99. Posey, M. H., C. Wingard & J. C. Stevenson, 1993. Effects of an introduced aquatic plant, Hydrilla verticillata, on benthic communities in the upper Chesapeake Bay. Estuar. coast. shelf sci. 37: 539–555.Google Scholar
  100. Preen, A. R., W. J. Lee Long & R. G. Coles, 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat. Bot. 52: 3–17.Google Scholar
  101. Roblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. Yarbro, R. T. Zieman & J. C. Zieman, 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (U.S.A.). Mar. Ecol. Prog. Ser. 71: 297–299.Google Scholar
  102. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486.Google Scholar
  103. Shaw, R. H., 1977. Secondary wind speed maxima inside plant canopies. J. Appl. Meteorol. 16: 514–521.Google Scholar
  104. Short, F. T., 1980. A simulation model of the seagrass production system. In Phillips R. C. & C. P. McCoy (eds), Handbook of Seagrass Biology: An Ecosystem Perspective. Garland STPM Press, NY: 275–295.Google Scholar
  105. Sirjola, E., 1969. Aquatic vegetation of the river Teuronjoki, south Finland and its relation to water velocity. Ann. Bot. fenn. 6: 68–75.Google Scholar
  106. Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and windexposed Lake Arresø, Denmark. Hydrobiologia 228: 91–99.Google Scholar
  107. Stewart, R. M., D. G. McFarland, D. L. Ward, S. K. Martin & J. W. Barko, 1997. Flume Study Investigation of the Direct Impacts of Navigation-Generated Waves on Submersed Aquatic Macrophytes in the Upper Mississippi River. Technical Report ENV Report 1, US Army Engineer Waterways Experiment Station, Vicksburg, MS: 62 pp.Google Scholar
  108. Strand, J. A. & S. E. B. Weisner, 1996. Wave exposure related growth of epiphyton: implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia 325: 113–119.Google Scholar
  109. Teeter, A. M., B. H. Johnson, C. Berger, G. Stelling, N. W. Scheffner, M. H. Garcia & T. M. Parchure, 2001. Hydrodynamic and sediment transport modeling with emphasis on shallowwater, vegetated areas (lakes, reservoirs, estuaries and lagoons). Hydrobiologia: 444: 1–23.Google Scholar
  110. Tilman, J. T., R.W. Curry, R. Jones, A. Szmant, J. C. Zieman, M. Flora, M. B. Roblee, D. Smith, R.W. Snow & H. Wanless, 1994. Hurricane Andrews effects on marine resources. BioScience 44: 230–237.Google Scholar
  111. Van Duin, E. H. S., G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, M. Dortch & E. P. H. Best, 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444: 25–42.Google Scholar
  112. Van Keulen, M., 1997. Water Flow in Seagrass Ecosystems. PhD Dissertation, Murdoch University, Australia: 260 pp.Google Scholar
  113. Wainright, S. C., 1990. Sediment to water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar. Ecol. Prog. Ser. 62: 271–281.Google Scholar
  114. Ward, L. G.,W. M. Kemp & W. R. Boynton, 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar. Geol. 59: 85–103.Google Scholar
  115. Westlake, D. F., 1967. Some effects of low-velocity currents on the metabolism of aquatic macrophytes. J. Exp. Bot. 13: 187–205.Google Scholar
  116. Westlake, D. F. & F. H. Dawson, 1988. The effects of autumnal weed cuts in a lowland stream on water levels and flooding in the following spring. Verh. int. Ver. Limnol. 23: 1273–1277.Google Scholar
  117. Wheeler, W. N., 1980. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56: 103–110.Google Scholar
  118. Williams, S., 1988. Disturbance and recovery of a deep-water Caribbean seagrass bed. Mar. Ecol. Progr. Ser. 42: 63–71.Google Scholar
  119. Worcester, S. E., 1995. Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments. Mar. Ecol. Prog. Ser. 126: 223–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. D. Madsen
    • 1
  • P. A. Chambers
    • 2
  • W. F. James
    • 3
  • E. W. Koch
    • 4
  • D. F. Westlake
    • 5
  1. 1.U.S. Army Engineer Research and Development CenterATTN: CEERD-EP-PVicksburgU.S.A.
  2. 2.National Water Research InstituteSaskatoonCanada
  3. 3.U.S. Army Engineer Research and Development Center, Eau Galle Limnological LaboratorySpring ValleyU.S.A.
  4. 4.Horn Point LaboratoryCambridgeU.S.A.
  5. 5.Aquatic Plant ConsultancyDorsetU.K.

Personalised recommendations