Hydrobiologia

, Volume 444, Issue 1–3, pp 147–158 | Cite as

Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships

  • Maria Laura Miserendino
Article

Abstract

Macroinvertebrate communities from 29 streams and rivers of the mountain and the Andean Patagonian Plateau were analyzed. Samples were collected from six river basins, which were part of four different biozones of the Patagonian Ecoregion. Samples from mountain streams were dominated by Plecoptera, Ephemeroptera, Trichoptera and Diptera, while plateau rivers where mainly Diptera, Oligochaeta and Mollusca. Total invertebrate abundance ranged from 7 to 12 249 ind.m−2. Elmidae, Paratrichocladius, Chironomus, Smicridea annulicornis, Parasericostoma ovale and Meridialaris laminata were the most abundant insect taxa, while Nais communis and Hyalella curvispina were the most abundant non-insect taxa. Species-environmental relationships were examined using Canonical Correspondence Analysis. Current speed, conductivity, substrate size and abundance of aquatic plants, were identified as the major variables structuring faunal assemblages. Regression analyses revealed that species richness was negatively correlated with latitude, and positively correlated with water temperature and altitude. Macroivertebrate abundance increased with conductivity, altitude and water temperature. These results suggest that habitat heterogeneity was the strongest predictor of macroinvertebrate assemblages, but species richness could be predicted at a landscape scale using topographical and climatic features.

Patagonian river landscape macroinvertebrates environmental relationships species richness abundance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albariño, R.,1997. Spatial distribution of Plecoptera from an Andean-Patagonic lotic environment in Argentina. Rev. Brasil. Biol. 57: 629–636.Google Scholar
  2. Albariño R. & D. A. Suárez, 1998. Functional classification of Klapopteryx kuscheli by gut content analysis and food preference experiments. Libro de resÚmenes del XIII International Symposium on Plecoptera and IX International Conference On Ephemeroptera: 21 pp.Google Scholar
  3. Burian, S, 1997. An analysis of the distribution and diversity of the Ephemeroptera of Maine, U.S.A. In Landolt & Sartori (eds), Ephemeroptera & Plecoptera. Biology-Ecology-Systematics. MTL. Fribourg, Switzerland: 127–138.Google Scholar
  4. Cantonati M. & K. Ortler, 1998. Using spring biota of pristine mountain areas for long-term monitoring. In Hydrology, Water resources and Ecology in headwaters (Proceedings of the Head-Water'98 Conference held at Meran/Merano, Italy). IAHS Publ. 248: 379–385.Google Scholar
  5. Coronato F. R. & H. F. Del Valle, 1988. Caracterización hídrica de las cuencas hidrográficas de la provincia del Chubut. Cenpat-Conicet. Puerto Madryn. Chubut. Argentina: 183 pp.Google Scholar
  6. Del Valle, H. F., J. C. Labraga & J. Goergen, 1995. Biozonas de la Región Patagónica. In: Evaluación del Estado Actual de la desertificación en Areas representativas de la Patagonia: Informe Final de la etapa I. Edited by INTA-GTZ, Río Gallegos-Trelew-Puerto Madryn-Bariloche: 37–55.Google Scholar
  7. Di Persia D. H., G. Martínez & J. C. Poledri, 1991. Estudios ecológicos en ambientes acuáticos de la Patagonia Argentina 5. Fauna Bentónica del río Mayo, Provincia del Chubut. Biología Acuática 15: 228–229.Google Scholar
  8. Domínguez E., M. D. Hubbard & M. L. Pescador, 1994. Los Ephemeroptera de Argentina. Fauna de Agua Dulce de la RepÚblica Argentina. 33. Fasciculo 1. Profadu, La Plata: 142 pp.Google Scholar
  9. Gordon, N. D, T. A. McMahon & B. L. Finlayson, 1994. Stream Hydrology, an Introduction for Ecologists. Wiley & Sons. New York: 526 pp.Google Scholar
  10. Hauer, F. R., J. S. Baron, D. H. Campbell, K. D. Fausch, S. W. Holstetler, G. H. Leavesley, P. R. Leavitt, D. M. Mac Knight & J. A. Stanfors, 1997. Assessment of climate change and freshwater ecosystem of the Rocky Mountains, U. S. and Canada. Hydrologic Processes. 11: 903–924.Google Scholar
  11. Hawkins, C. P., 1984. Substrate associations and longitudinal distributions in species of Ephemerellidae (Ephemeroptera: Insecta) from western Oregon. Freshw. Invertebr. Biol. 3: 181–188.Google Scholar
  12. Hubert W. A., J. Lavoie & L. D. DeBray, 1996. Densities and substrate associations of macroinvertebrates in riffles of a small High Plains Stream. J. Freshwat. Ecol. 11: 21–26.Google Scholar
  13. Illies, J., 1969. Biogeography and ecology of Neotropical freshwater insects, especially those from running waters. In Fittkau, E. J., J. Illies, H. Kling, G. H. Schabe & H. Sioli (eds), Biogeography and Ecology in South America. 2. Dr W. Junk Publishers, The Hague: 685–708.Google Scholar
  14. Illies, J. & L. Botoseananu, 1963. Problemes et methodes de la classification et de la zonation ecologique des eaux courantes, considerees surtout du point de vue faunistique. Mitt. int. Ver. fur Theor. Angewan. Limnol. 12: 1–57.Google Scholar
  15. Lopretto, E. C. & G. Tell, 1995. Ecosistemas de aguas continentales. Hemisferio Sur, La Plata: 1401 pp.Google Scholar
  16. Malmqvist B. & M. Mäki, 1994. Benthic macroinvertebrate assemblages in north Swedish streams: environmental relationships. Ecography 17: 9–16.Google Scholar
  17. Miserendino, M. L., 1996. Primera descripción de la ninfa de Rhigotopus (Ephemeroptera: Leptophlebiidae), con datos sobre su biología. Rev. Soc. Entomol. Argent. 55: 21–21.Google Scholar
  18. Miserendino M. L., 1998. Ecología del Bentos del Sistema hídrico Esquel-Percy. M.Sc. Thesis. Universidad Nacional del Litoral. Santa Fe. Argentina.Google Scholar
  19. Miserendino, M. L. & L. A. Pizzolón, 2000a. Abundance and altitudinal distribution of Ephemeroptera in an Andean-Patagonian lotic system (Argentina). Proceedings of the IX International conference of Ephemeroptera and XIII International Symposium on Plecoptera. Tafí del Valle. Argentina (in press).Google Scholar
  20. Miserendino, M. L. & L. A. Pizzolón, 2000b. Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Archiv fur hydrobiologie 150: 55–83.Google Scholar
  21. Modenutti, B. E., E. G. Balseiro, C. P Queimaliños, D. A. Suárez, M. C. Dieguez & R. J. Albariño, 1998. Structure and dynamics of food webs in Andean lakes. Lakes & Reservoirs: Research and Management, 3: 179–186.Google Scholar
  22. Ormerod, S. J. & R.W. Edwards, 1987. The ordination and classification of macroinvertebrate assemblages in the catchments of the River Wye in relation to environmental factors. Freshwat. Biol. 17: 533–546.Google Scholar
  23. Oswood, M. W., 1989. Community structure of benthic invertebrates in interior Alaskan (U.S.A.) stream and rivers. Hydrobiologia 172: 97–110.Google Scholar
  24. Oswood M. W., A. M. Milner & J. G. Irons III, 1992. Climate change and Alaskan rivers and streams. In Firth, P. & Fisher (eds), Global Climate Change and Freshwater Ecosystems. U.S.A.: 192–210.Google Scholar
  25. Paruelo, J. M., E. G Jobbagy & Sala, 1999. Biozones of Patagonia (Argentina). Ecol. Aust. 8: 170–178.Google Scholar
  26. Rodríguez, P. & J. F. Wright, 1988. Biological evaluation of the quality of three basque water courses. Proceedings of the II International Basque Water Courses. Leioa (Spain) Novembre, tome II: 223–243.Google Scholar
  27. Strahler, A. N., 1957. Quantitative analysis of watershed morphology. Trans. am. Geoghys. Union.38: 913–920.Google Scholar
  28. Tell G., I. Izaguirre & R. Quintana, 1997. Flora y Fauna Patagómicas. Ediciones Caleuche. Bariloche, Argentine: 175 pp.Google Scholar
  29. Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  30. Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference manual and User's guide to Canoco for Windows: software for Canonical Community Ordination (version 4). Microcomputer power. Ithaca, NY, U.S.A.: 352 pp.Google Scholar
  31. Ter Braak, C. J. F. & P. Smilauer, 1999. CANOCO for Windows (version 4.02) - a FORTRAN program for canonical community ordination. Centre for biometry Wageningen. Wageningen. The Netherlands.Google Scholar
  32. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.Google Scholar
  33. Vinson, M. R. & C. P. Hawkins, 1998. Biodiversity of stream insects: Variation at local, basin and regional scales. Annu. Rev. Entomol. 43: 271–293.Google Scholar
  34. Voelz, N. J. & J. Ward 1990. Macroinvertebrate responses along a complex regulated stream environmental gradient. Regulated rivers Research & Management 5: 365–374.Google Scholar
  35. Wais, I., 1985. Strategies adaptatives aux eaux courantes des invertebres du bassin du fleuve Negro Patagonie, Argentine. Verh. int. Ver. Limnol. 22: 2167–2172.Google Scholar
  36. Wais, I., 1987. Macrozoobenthos of Negro River Basin, Argentine, Patagonia. Stud. on Neotrop. Fauna & Environment 22: 73–91.Google Scholar
  37. Wais, I. R., 1990. A checklist of the benthic macroinvertebrates of the Negro River Basin, Patagonia, Argentina, including an approach to their functional feeding groups. Acta Limnol. Brasil. 3: 829–845.Google Scholar
  38. Wais, I. R. & A. Bonetto, 1988. Analysis of the allochthonous organic matter and associated macroinvertebrates in some streams of Patagonia (Argentina). Verh. int. Ver. Limnol. 23: 1455–1459.Google Scholar
  39. Ward, J. V., 1986. Altitudinal zonation in a Rocky Mountain stream. Arch. Hydrobiol. Suppl. 74: 133–199.Google Scholar
  40. Ward, J. V., 1998. Riverine landscapes: Biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83: 269–278.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Maria Laura Miserendino
    • 1
  1. 1.Laboratorio de Ecologia AcuáticaUniversidad Nacional de la PatagoniaChubutArgentina

Personalised recommendations