Plant Ecology

, Volume 153, Issue 1–2, pp 51–63

Epiphytes and their contribution to canopy diversity

  • Jürgen Nieder
  • Juliana Prosperí
  • Georges Michaloud


About ten percent of all vascular plant species world-wide are epiphytes and they are almost exclusively found in tropical forests. Therefore, they constitute a large part of the global plant biodiversity (10% of all species), and in tropical countries represent up to 25% of all vascular plant species. Focusing on the differences between epiphytes in the strict sense or ‘holo-epiphytes’ (non-parasitic plants that use other plants – usually trees – as growing sites all through their life-cycle) and ‘hemi-epiphytes’ (‘half’ epiphytes which only spend part of their life as epiphytes until their aerial roots become connected to the ground), horizontal and vertical distribution patterns of both in relation to some of their ecological requirements are compared. Vertical ecological gradients (i.e., insolation and humidity differences from the forest floor to the canopy surface) are relevant for the composition of the holo- epiphytic vegetation. For hemi-epiphytes, however, ecological differences between distinct forest habitats (i.e., horizontal gradients) are relevant, but not primarily the canopy structure, as the individual host tree structure is more important. The scale-dependence of epiphyte diversity assessment (relatively small study areas for holo-epiphytes, large study areas for hemi-epiphytes) is mainly due to the striking differences in plant sizes and related mechanical and physiological requirements.

Biodiversity Ficus Neotropical and Paleotropical epiphytes Rain forest Vascular plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthlott, W., Lauer, W. & Placke, A. 1996. Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50: 317–327.Google Scholar
  2. Barthlott, W., Biedinger, N., Braun, G., Feig, F., Kier, G. & Mutke, J. 1999. Terminological and methodological aspects of the mapping and analysis of global biodiversity. Acta Bot. Fenn. 162: 103–110.Google Scholar
  3. Berg, C. C. & Wiebes, J. T. 1992. African fig trees and fig wasps. Kon. Nederl. Akad. Wet., Verhand. Afd. Natuurk., Tweede Reeks.Google Scholar
  4. Biedinger, N. & Fischer, E. 1996. Epiphytic vegetation and ecology in central African forests (Rwanda, Zaire). Ecotropica 2: 121–142.Google Scholar
  5. Boegner, A. 1999. Diversität und Phytogeographie der epiphytischen Angiospermen ausgewählter paläo-und neotropischer Gebiete. Unpublished diploma thesis. Botanisches Institut, Universität Bonn, Bonn.Google Scholar
  6. Bradbury, J. W. 1977. Lek mating behavior in the hammer-headed bat. Z. f. Tierpsychol. 45: 225–255.Google Scholar
  7. Bradbury, J. W. 1981. The evolution of lek. Pp. 138–169. In: Alexander, R. D. & Tinckle, D. W. (eds), Natural selection and social behavior. Chiron, New York.Google Scholar
  8. Catling, P. M. & Levkovitch, L. P. 1989. Associations of vascular epiphytes in a Guatemalan cloud forest. Biotropica 21: 35–40.Google Scholar
  9. Coxson, D. S. & Nadkarni, N. M. 1995. Ecological roles of epiphytes in nutrient cycles of forest ecosystems. Pp. 495–543. In: Lowman, M. D. & Nadkarni, N. M. (eds), Forest canopies. Academic Press, San Diego.Google Scholar
  10. David, P. 1993. Etude comparative des préférences écologiques de quelques espè ces de Ficus hémi-épiphytes des forê ts tropicales. DEA Evolution et Ecologie, Université de Montpellier II, Pp. I-VI.Google Scholar
  11. Davidson, D. W. 1988. Ecological studies of neotropical ant gardens. Ecology 69: 1138–1152.Google Scholar
  12. Dudgeon, W. 1923. Succession of epiphytes in the Quercus incana forest at Landour, western Himalayas, preliminary note. J. Ind. Bot. Soc. 3: 270–272.Google Scholar
  13. Dunsterville, G. C. K. 1961. How many orchids on a tree? Am. Orchid Soc. Bull. May 1961: 362–363.Google Scholar
  14. Engwald, S. 1999. Ökologie und Diversität der Epiphyten eines Tiefland-und eines Bergregenwalds in Venezuela. Libri-Books on Demand. Hamburg.Google Scholar
  15. Foster, R. B. & Hubbel, S. P. 1990. The floristic composition of the Barro Colorado Island forest. Pp. 99–11. In: Gentry, A. H. (ed.), Four neotropical rain forests. Yale University Press, New Haven and London.Google Scholar
  16. Freiberg, M. 1997. Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18: 77–84.Google Scholar
  17. Gautier-Hion, A. & Michaloud, G. 1989. Are figs always keystone resources for tropical frugivorous vertebrates? A test in Gabon. Ecology 70: 1826–1833.Google Scholar
  18. Gentry, A. H. & Dodson, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Ann. Miss. Bot. Gar. 74: 205–233.Google Scholar
  19. Groombridge, B. (ed.) 1992. Global biodiversity: status of the earth's living resources. Chapman & Hall, London.Google Scholar
  20. Guy, P. R. 1977. Notes on the host species of epiphytic figs (Ficus spp.) on the flood plain of the Mana pools game reserve, Rhodesia. Kirkia 10: 559–562.Google Scholar
  21. Hall, J. B. 1976. Classification and ecology of closed-canopy forest in Ghana. J. Ecology 64: 913–951.Google Scholar
  22. Hall, J. B. 1978. Check-list of the vascular plants of Bia National Park and Bia Game Production Reserve. In: Martin, C. (ed.), Management plan for the Bia Wildlife Conservation Areas, Part I. Wildlife and National Parks Division, Ghana Forestry Commission. Final Report IUCN/WWF Project 1251.Google Scholar
  23. Hartshorn, G. S. & Hammel, B. E. 1994. Vegetation types and floristic patterns. Pp. 73–89. In: McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds), La Selva. The University of Chicago Press, Chicago.Google Scholar
  24. Heywood, V. H. (ed.) 1995. Global biodiversity assessment. Cambridge University Press, Cambridge.Google Scholar
  25. Hosokawa, T. 1950. Epiphyte-quotient. Bot. Mag. Tokyo 63: 18–19.Google Scholar
  26. Hietz-Seifert, U., Hietz, P. & Guevara, S. 1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz. Biol. Cons. 75: 103–111.Google Scholar
  27. Ibisch, P. 1996. Neotropische Epiphytendiversität-das Beispiel Bolivien. Martina Galunder-Verlag, Wiehl.Google Scholar
  28. Ibisch, P., Boegner, A., Nieder, J. & Barthlott, W. 1996. How diverse are neotropical epiphytes? An analysis based on the 'Catalogue of the flowering plants and gymnosperms of Peru'. Ecotropica 2: 13–28.Google Scholar
  29. Johansson, D. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59: 1–136.Google Scholar
  30. Johansson, D. R. 1989. Vascular epiphytism in Africa. Pp. 183–194. In: Lieth, H. & Werger, M. J. A. (eds), Tropical rain forest ecosystems. Elsevier, Amsterdam.Google Scholar
  31. Kelly, D. L. 1985. Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. J. Biogeog. 12: 223–241.Google Scholar
  32. Kelly, D. L., Tanner, E. V. J., Nic Lughada, E. & Kapos, V. 1994. Floristics and biogeography of a rain forest in the Venezuelan Andes. J. Biogeog. 21: 421–440.Google Scholar
  33. Kikuchi, T. 1992. Communities of epiphytic vascular plants on a Himalayan mountainside in far eastern Nepal. Ecol. Rev. 22: 121–128.Google Scholar
  34. Kress, W. J. 1986. The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22.Google Scholar
  35. Longman, H. A. 1917. The flora of a single tree. Proc. Royal Soc. Queensland 29: 64–69.Google Scholar
  36. Lüttge, U. (ed.) 1989. Vascular plants as epiphytes. Springer-Verlag, Berlin.Google Scholar
  37. Lüttge, U., Ball, E., Kluge, M. & Ong, B. L. 1986. Photosynthetic light requirements of various tropical vascular epiphytes. Physiol. Vég. 24: 315–331.Google Scholar
  38. Martin, C. 1989. Die Regenwälder Westafrikas: Ökologie-Bedrohung-Schutz. Birkhäuser, Basel.Google Scholar
  39. Michaloud, G. 1988. Aspects de la reproduction des figuiers monoï ques en forê t équatoriale africaine. Unpublished PhD thesis, University of Montpellier II, Montpellier.Google Scholar
  40. Michaloud, G. & Michaloud-Pelletier, S. 1987. Ficus hémiépiphytes (Moraceae) et arbres supports. Biotropica 19: 125–136.Google Scholar
  41. Michaloud, G., Carriè re, S. & Kobbi, M. 1996. Exceptions to the one: one relationship between African fig trees and their fig wasp pollinators: possible evolutionary scenarios. J. Biogeog. 23: 513–520.Google Scholar
  42. Mø ller Jø rgensen, P. & Leó n-Yánez, S. (eds). 1999. Catalogue of the vascular plants of Ecuador. Missouri Botanical Garden Press, St. Louis, Missouri.Google Scholar
  43. Nieder, J. & Zotz, G. 1998. Methods of analyzing the structure and dynamics of vascular epiphyte communities. Ecotropica 4: 33–39.Google Scholar
  44. Nieder, J., Engwald, S., Klawun, M. & Barthlott, W. 2000. Spatial distribution of vascular epiphytes in a lowland Amazonian rain forest in southern Venezuela. Biotropica 32: 385–396.Google Scholar
  45. Nowicki, C. 1998. Diversität epiphytischer und terrestrischer Pflanzen eines ecuadorianischen Bergnebelwaldes im Vergleich. Unpublished diploma thesis. Botanisches Institut, Universität Bonn. Bonn.Google Scholar
  46. Papulin, F., Bianchi, E., Germani, M., Pedruzzi, D. & Wagner, A. 1995. Orchid diversity and distribution on a tree at Reserva Forestal de San Ramó n, Costa Rica. Brenesia 43–44: 47–54.Google Scholar
  47. Prosperi, J. 1998. Biologie du développement des hémi-épiphytes ligneux. Unpublished PhD thesis, University of Montpellier II, Montpellier.Google Scholar
  48. Putz, F. E. 1983. Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro basin, Venezuela. Biotropica 15: 185–189.Google Scholar
  49. Putz, F. E. & Holbrook, N. M. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9: 61–69.Google Scholar
  50. Putz, F. E. & Holbrook, N. M. 1989. Strangler fig rooting habits and nutrient relations in the Llanos of Venezuela. Am. J. Botany 76: 781–788.Google Scholar
  51. Rauer, G. 1995. Epiphytische Orchidaceae eines westandinen Bergregenwaldes in Ecuador. Unpublished diploma thesis. Botanisches Institut, Universität Bonn, Bonn.Google Scholar
  52. Richards, P.W. 1952. The tropical rain forest. Cambridge University Press, Cambridge.Google Scholar
  53. Rudolph, D. 1995. Vaskuläre Epiphyten eines westandinen Bergregenwaldes in Ecuador. Unpublished diploma thesis. Botanisches Institut, Universität Bonn, Bonn.Google Scholar
  54. Rudolph, D., Rauer, G., Nieder, J. & Barthlott, W. 1998. Distributional patterns of epiphytes in the canopy and phorophyte characteristics in a western Andean rain forest in Ecuador. Selbyana 19: 27–33.Google Scholar
  55. Sanford, W. W. 1969. The distribution of epiphytic orchids in Nigeria in relation to each other and to geographic location and climate, type of vegetation and tree species. Biol. J. Linnean Soc. 1: 247–285.Google Scholar
  56. Schnell, R. 1952. Végétation et flore de la région montagneuse des Nimba. Mem. I.F.A.N. 22: 1–356.Google Scholar
  57. Ter Steege, H. & Cornelissen, J. H. C. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21: 331–339.Google Scholar
  58. Tewari, M., Upreti, N., Pandey, P. & Sing, S. P. 1985. Epiphytic succession on tree trunks in a mixed oak-cedar forest (Kumaun, Himalaya). Vegetatio 63: 105–112.Google Scholar
  59. Todzia, C. 1986. Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama. Biotropica 18: 22–27.Google Scholar
  60. Van Oye, P. 1921. Influence des facteurs climatiques sur la répartition des épiphytes à la surface des troncs d'arbres à Java. Rev. Gén. Bot., 33: 161–176.Google Scholar
  61. Watson, J. B., Kress, W. J. & Roesel, C. S. 1988. A bibliography of biological literature on vascular epiphytes. Selbyana 10: 1–23.Google Scholar
  62. Williams-Linera & Lawton, R. O. 1995. The ecology of hemiepiphytes in forest canopies. Pp. 255–283. In: Lowman, M. D. & Nadkarni, N. M. (eds), Forest canopies. Academic Press, San Diego.Google Scholar
  63. Zotz, G. 1995. How fast does an epiphyte grow? Selbyana 16: 150–154.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jürgen Nieder
    • 1
  • Juliana Prosperí
    • 2
  • Georges Michaloud
    • 2
  1. 1.Botanisches Institut der Universität BonnBonnGermany
  2. 2.Laboratoire de BotaniqueUniversité de Montpellier II, CNRS–ISEM–UMR 5554MontpellierFrance

Personalised recommendations