Journal of Materials Science

, Volume 33, Issue 6, pp 1571–1578

Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3



The anatase–rutile phase transition in TiO2 in the presence of Fe2O3 was investigated in air and argon atmospheres by means of X-ray diffraction and scanning electron microscopy. Isothermal curves of rutile transformed from anatase as a function of time were obtained between 825 and 950 °C. The data were well fitted by various rate laws. In the presence of Fe3+, the anatase–rutile transition temperature is lower and the transformation rate in air is higher than the corresponding one in pure TiO2. The transformation in the presence of Fe3+ in an argon atmosphere is more rapid than in air. The enhancement effect of Fe3+ on the anatase–rutile transformation in both atmospheres is understood on the basis of the formation of oxygen vacancies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Christian, “Theory of transformation in metals and alloys” (Pergamon Press, Oxford, 1965).Google Scholar
  2. 2.
    C. N. R. Rao and K. J. Rao, “Phase transitions in solids” (MacGraw-Hill, New York, 1978).Google Scholar
  3. 3.
    Z. Chvoj, J. SestÁk and A. Triska, “Kinetic phase diagrams non equilibrium phase transitions” (Elsevier, Amsterdam, 1991).Google Scholar
  4. 4.
    C. N. Rao, S. R. Yoganarasimhan and P. A. Faeth, Trans. Farad. Soc. 57 (1961) 504.Google Scholar
  5. 5.
    R. D. Shannon and J. A. Pask, J. Am. Ceram. Soc. 48 (1965) 391.Google Scholar
  6. 6.
    K. J. D. Mackenzie, Trans. J. Br. Ceram. Soc. 74(2) (1975) 29.Google Scholar
  7. 7.
    C. N. R. Rao, A. Turner and J. M. Honing, J. Phys. Chem. Solids 11(1–2) (1959) 473.Google Scholar
  8. 8.
    S. R. Yoganarasimhan and C. N. R. Rao, Trans. Farad. Soc. 58 (1962) 1579.Google Scholar
  9. 9.
    Y. Iida and S. Ozaki, J. Am. Ceram. Soc. 44 (1961) 120.Google Scholar
  10. 10.
    O. W. FlÖrke, Mitt. Ver. Deut. Emailfachleute 6(6) (1958) 49.Google Scholar
  11. 11.
    A. Suzuki and R. Tukuda, Bull. Chem. Soc. Jpn 42 (1969) 1853.Google Scholar
  12. 12.
    E. F. Heald and C. W. Weiss, Am. Mineral. 57 (1972) 10.Google Scholar
  13. 13.
    K. J. D. Mackenzie, Trans. J. Br. Ceram. Soc. 74(3) (1975) 77.Google Scholar
  14. 14.
    R. D. Shannon, J. Appl. Phys. 35 (1964) 3414.Google Scholar
  15. 15.
    K. J. D. Mackenzie, Trans. J. Br. Ceram. Soc. 74(4) (1975) 121.Google Scholar
  16. 16.
    J. Andrade Gamboa and D. M. Pasquevich, J. Am. Ceram. Soc. 75 (1992) 2934.Google Scholar
  17. 17.
    A. W. Czanderna, C. N. Ramachandra Rao and J. M. Honing, Trans. Farad. Soc. 54 (1958) 1069.Google Scholar
  18. 18.
    F. P. Cornaz, J. H. C. Van Hooff, F. J. Pluijim and C. G. A. Schuit, Discuss. Farad. Soc. 41 (1966) 290.Google Scholar
  19. 19.
    R. A. Spurr and H. Myers, Anal. Chem. 29 (1957) 760.Google Scholar
  20. 20.
    F. Nelli and D. M. Pasquevich, unpublished results.Google Scholar
  21. 21.
    C. N. R. Rao, Can. J. Chem. 39 (1961) 498.Google Scholar
  22. 22.
    W. A. Johnson and R. F. Mehl, Trans. AIME 135 (1939) 416.Google Scholar
  23. 23.
    M. Avrami, J. Chem. Phys. 7 (1939) 1103.Google Scholar
  24. 24.
    Idem, ibid. 8 (1940) 212.Google Scholar
  25. 25.
    Idem, ibid. 9 (1941) 177.Google Scholar
  26. 26.
    D. Cordischi, N. Burriesci, F. D. D'Alba, M. Petrera, G. Polizzotti and M. Schiavello, J. Solid State Chem. 56 (1985) 182.Google Scholar
  27. 27.
    R. I. Bickley, J. S. Lees, R. J. D. Tilley, L. Palmisano and M. Schiavello, J. Chem. Soc. Farad. Trans. 88 (1992) 377.Google Scholar
  28. 28.
    R. D. Shannon, Acta Crystallogr. A32 (1976) 751.Google Scholar
  29. 29.
    D. L. Carter and A. Okaya, Phys. Rev. 118 (1960) 1485.Google Scholar
  30. 30.
    A. Amorelli, J. C. Evans and C. C. Rowlands, J. Chem. Soc. Farad. Trans. 1 83 (1987) 3541.Google Scholar
  31. 31.
    E. A. KrÖger, “The chemistry of imperfect crystals” (Wiley, New York, 1964).Google Scholar
  32. 32.
    P. C. Richardson, R. Rudham, A. Tullett and K. P. Wagstaff, J. Chem. Soc. Farad. Trans. 1 68 (1972) 2203.Google Scholar
  33. 33.
    P. Kofstad, “Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides” (Wiley Interscience, New York, 1972).Google Scholar
  34. 34.
    M. Arita, M. Hosoya, M. Kobayashi and M. Someno, J. Am. Ceram. Soc. 62 (1979) 443.Google Scholar
  35. 35.
    E. M. Levin, C. R. Robbins and H. F. Mcmurdie, “Phase diagrams for ceramists”, 3rd Edn (The American Ceramic Society, Columbus, OH, 1964) p. 62.Google Scholar
  36. 36.
    R. S. De Biasi and M. L. N. Grillo, J. Phys. Chem. Solids 57 (1995) 137.Google Scholar
  37. 37.
    S. Mrowec, “Defects and diffusion in solids: an introduction” (Elsevier Scientific, Amsterdam, 1980).Google Scholar
  38. 38.
    J. F. Marucco, J. Gautron and P. Lemasson, J. Phys. Chem. Solids 42 (1981) 363.Google Scholar
  39. 39.
    J. Sasaki, N. L. Peterson and K. Hoshino, ibid. 46 (1985) 1267.Google Scholar
  40. 40.
    F.C. Gennari, J. J. Andrade Gamboa and D. M. Pasquevich, J. Mater. Sci. 33 (1998) p. 1563.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  1. 1.Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, (8400) s.c. de BarilocheRío NegroArgentina

Personalised recommendations