Climatic Change

, Volume 51, Issue 1, pp 73–99 | Cite as

Monitoring and Verifying Changes of Organic Carbon in Soil

  • W. M. Post
  • R. C. Izaurralde
  • L. K. Mann
  • N. Bliss

Abstract

Changes in soil and vegetation management can impact strongly on the rates of carbon (C) accumulation and loss in soil, even over short periods of time. Detecting the effects of such changes in accumulation and loss rates on the amount of C stored in soil presents many challenges. Consideration of the temporal and spatial heterogeneity of soil properties, general environmental conditions, and management history is essential when designing methods for monitoring and projecting changes in soil C stocks. Several approaches and tools will be required to develop reliable estimates of changes in soil C at scales ranging from the individual experimental plot to whole regional and national inventories. In this paper we present an overview of soil properties and processes that must be considered. We classify the methods for determining soil C changes as direct or indirect. Direct methods include field and laboratory measurements of total C, various physical and chemical fractions, and C isotopes. A promising direct method is eddy covariance measurement of CO2 fluxes. Indirect methods include simple and stratified accounting, use of environmental and topographic relationships, and modeling approaches. We present a conceptual plan for monitoring soil C changes at regional scales that can be readily implemented. Finally, we anticipate significant improvements in soil C monitoring with the advent of instruments capable of direct and precise measurements in the field as well as methods for interpreting and extrapolating spatial and temporal information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adams, W. A.: 1973, 'The Effect of Organic Matter on the Bulk and True Densities of Uncultivated Podzolic Soils', J. Soil Sci. 24, 10–17.Google Scholar
  2. Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: 1988, 'Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods', Ecology 69, 1331–1340.Google Scholar
  3. Batjes, N. H.: 1996, 'Total Carbon and Nitrogen in the Soils of the World', European J. Soil Sci. 47, 151–163.Google Scholar
  4. Beare, M. H., Cabrera, M. L., Hendrix, P. F., and Coleman, D. C.: 1994, 'Aggregate-Protected and Unprotected Organic Matter Pools in Conventional-and No-Tillage Soils', Soil Sci. Soc. Am. J. 58, 787–795.Google Scholar
  5. Biederbeck, V. O., Janzen, H. H., Campbell, C. A., and Zentner, R. P.: 1994, 'Labile Soil Organic Matter as Influenced by Cropping Practices in an Arid Environment', Soil Biol. Biochem. 26, 1647–1656.Google Scholar
  6. Blake, G. R. and Hartge, K. H.: 1986, 'Bulk Density', in Klute, A. (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Agron. Monograph 9, 363–375. American Society of Agronomy, Madison, Wisconsin.Google Scholar
  7. Bliss, N. B., Waltman, S. W., and Petersen, G. W.: 1995, 'Preparing a Soil Carbon Inventory for the United States Using Ggeographic Information Systems', in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Adv. Soil Sci: Soil and Global Change, CRC Press, Lewis Publishers, Boca Raton, FL, pp. 275–295.Google Scholar
  8. Brussaard, L. and Kooistra, M. J. (eds.): 1993, Soil Structure/Soil Biota Interrelationships, International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships, held at the International Agricultural Centre, Wageningen, The Netherlands, 24–28 November, 1991, Geoderma 56(1–4)–57(1–2), Special Issue.Google Scholar
  9. Buol, S.W., Hole, F. D., McCracken, R. J., and Southard, R. J.: 1997, Soil Genesis and Classification, 4th edn., Iowa State University Press, Ames, IA.Google Scholar
  10. Burke, I. C., Schimmel, D. S., Yonker, C.M., Parton, W. J., Joyce, L. A., and Lauenroth, W. K.: 1990, 'Regional Modeling of Grassland Biogeochemistry Using GIS', Landscape Ecol. 4, 45–54.Google Scholar
  11. Burke, I. C., Lauenroth, W. K., Parton, W. J., and Cole, C. V.: 1994, 'Interactions of Landuse and Ecosystem Structure and Function: A Case Study in the Central Great Plains', in Groffman, P.M. and Likens, G. E. (eds.), Integrated Regional Models: Interactions Between Humans and their Environment, Chapman and Hall, New York, pp. 79–95.Google Scholar
  12. Businger, J. A.: 1986, 'Evaluation of the Accuracy with Which Dry Deposition Can Be Measured with Current Micrometeorological Techniques', J. Clim. Appl. Meteorol. 25, 1100–1124.Google Scholar
  13. Buyanovsky, G. A., and Wagner, G. H.: 1998, 'Carbon Cycling in Cultivated Land and its Global Significance', Global Change Biol. 4, 131–142.Google Scholar
  14. Carter, M. R. (ed.): 1993, 'Soil Sampling and Methods of Analysis', Can. Soc. Soil Sci., Lewis Publishers, Ann Arbor, MI.Google Scholar
  15. Chen, F., Kissel, D. E., West, L. T., and Adkins, W.: 2000, 'Mapping Soil Surface Organic Carbon at the Field Scale with Remotely Sensed Imagery', Soil Sci. Soc. Am. J., in press.Google Scholar
  16. Christensen, B. T.: 1996, 'Matching Measurable Soil Organic Matter Fractions with Conceptual Pools in Simulation Models of Carbon Turnover: Revision of Model Structure', in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models, NATO ASI Series 1, Vol. 38, Springer-Verlag, Berlin, pp. 143–160.Google Scholar
  17. Christensen, B. T. and Johnston. A. E.: 1997, 'Soil Organic Matter and Soil Quality – Lessons Learned from Long-Term Experiments at Askov and Rothamsted', in Gregorich, E. G. and Carter, M. R. (eds.), Soil Quality for Crop Production and Ecosystem Health Dev. Soil Sci. 25, 399–430.Google Scholar
  18. Cole, V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N. J., and Sauerbeck, D.: 1996, 'Agricultural Options for Mitigation of Greenhouse Gas Emissions', in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, pp. 744–771.Google Scholar
  19. Coleman, K. and Jenkinson, D. S.: 1996, 'RothC-26.3 – A Model for the Turnover of Carbon in Soil', in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, Heidelberg, pp. 237–246.Google Scholar
  20. Culley, J. L. B.: 1993, 'Density and Compressibility', in Carter, M. R. (ed.), Soil Sampling and Methods of Analysis, Can. Soc. Soil Sci., Lewis Publishers, Ann Arbor, MI, pp. 529–539.Google Scholar
  21. Dick, W. A., Blevins, R. L., Frye, W.W., Peters, S. E., Christenson, D. R., Pierce, F. J., and Vitosh, M. L.: 1998, 'Impacts of Agricultural Management Practices on C Sequestration in Forest-Derived Soils of the Eastern Corn Belt', Soil Till. Res. 47, 235–244.Google Scholar
  22. Ellert, B. H. and Bettany, J. R.: 1995, 'Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes', Can. J. Soil Sci. 75, 529–538.Google Scholar
  23. Ellert, B. H., Janzen, H. H., and McConkey, B.: 2000, 'A Method for Measuring Soil Carbon Change on the Canadian Prairies', in Lal, R., Kimble, J., and Follett, R. (eds.), An International Workshop on Assessment Methods for Soil C Pools, Ann Harbor Press, in press.Google Scholar
  24. Elliott, E. T., Burke, I. C., Monz, C. A., Frey, S. D., Paustian, K. H., Collins, H. P., Paul, E. A., Cole, C. V., Blevins, R. L., Frye, W. W., Lyon, D. J., Halvorson, A. D., Huggins, D. R., Turco, R. F., and Hickman, M. V.: 1994, 'Terrestrial Carbon Pools in Grassland and Agricultural Soils: Preliminary data from the Corn Belt and Great Plains Regions', in Doran, J.W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A. (eds.), Defining Soil Quality for a Sustainable Environment, SSSA Special Publication No. 35, SSSA-ASA, Madison, WI, pp. 179–192.Google Scholar
  25. Eswaran, H., Van den Berg, E., Reich, P. and Kimble, J.: 1995, 'Global Soil Carbon Resources', in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Advances in Soil Science: Soils and Global Change, Lewis Publishers, CRC Press. Boca Raton, FL, pp. 27–43.Google Scholar
  26. Falloon, P. D., Smith, P., Smith, J. U., Szabó, J., Coleman, K., and Marshall, S.: 1998, 'Regional Estimates of Carbon Sequestration Potential: Linking the Rothamsted Carbon Model to GIS Databases', Biol. Fertil. Soils 27, 236–241.Google Scholar
  27. Fernandez, I. J., Rustad, L. E., and Lawrence, G. B.: 1993, 'Estimating Total Soil Mass, Nutrient Content, and Trace-Metals in Soils under a Low Elevation Spruce-Fir Forest', Can. J. Soil Sci. 73, 317–328.Google Scholar
  28. Garten, C. T. and Wullschleger, S. D.: 1999, 'Soil Carbon Inventories under a Bioenergy Crop (Panicum virgatum): Measurement Limitations', J. Environ. Qual. 28, 1359–1365.Google Scholar
  29. Grace, P. R. and Ladd, J. N.: 1995, 'SOCRATES v2.00 User Manual', Cooperative Research Centre for Soil and Land Management, PMB 2 Glen Osmond 5064, South Australia.Google Scholar
  30. Grant, R. F., Juma, N. G., and McGill, W. B.: 1993, 'Simulation of carbon and nitrogen transformations in soil: Mineralization', Soil Biol. Biochem. 25, 1317–1329.Google Scholar
  31. Hendrix, P. F., Franzluebbers, A. J., and McCracken, D. V.: 1998, 'Management Effects on C Accumulation and Loss in Soils of the Southern Appalachian Piedmont of Georgia', Soil Till. Res. 47, 245–251.Google Scholar
  32. Henry, C. L. and Harrison, R. B.: 1996, 'Carbon Fractions in Compost and Compost Maturity Tests', in Magdoff, F. R., Tabatabai, M. A., and Hanlon Jr., E. A. (eds.), Soil Organic Matter: Analysis and Interpretation, SSSA Special Publication No. 46, Madison, WI, pp. 51–67.Google Scholar
  33. Horwath, W. R. and Paul, E. A.: 1994, 'Microbial Biomass', in Weaver, R. W., Angle, J. S., and Bottomley, P. S. (eds.), Methods of Soil Analysis, Part 2: Microbial and Biochemical Properties, Soil Science Society of America Book Series 5, Madison, Wisconsin, pp. 753–773.Google Scholar
  34. Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: 1999, 'The U.S. Carbon Budget: Contributions from Land-Use Change', Science 285, 574–278.Google Scholar
  35. Huntington, T. G., Ryan, D. F., and Hamburg, S. P.: 1988, 'Estimating Soil Nitrogen and Carbon Pools in a Northern Hardwoodforest Ecosystem', Soil Sci. Soc. Amer J. 52, 1162–1167.Google Scholar
  36. Izaurralde, R. C., Hauren-Kozyra, K. L., Jans, D. C., McGill, W. B., Grant, R. F., and Hiley, J. C.: 2000, 'Soil C Dynamics: Measurement, Simulation and Site-to-Region Scale-Up', in Lal, R., Kimble, J. and Follett, R. (eds.), An International Workshop on Assessment Methods for Soil C Pools, Ann Harbor Press, in press.Google Scholar
  37. Izaurralde, R. C., McGill, W. B., Bryden, A., Graham, S., Ward, M., and Dickey, P.: 1998a, 'Scientific Challenges in Developing a Plan to Predict and Verify Carbon Storage in Canadian Prairie soils', in Lal, R., Kimble, J., Follett, R., and Stewart, B. A. (eds.), Management of Carbon Sequestration in Soil. Adv. Soil Sci., CRC Press, Inc., Boca Raton, FL, pp. 433–446.Google Scholar
  38. Izaurralde, R. C., Nyborg, M., Solberg, E. D., Janzen, H. H., Arshad, M. A., Malhi, S. S., and Molina-Ayala, M.: 1998b, 'Carbon Storage in Eroded Soils after Five Years of Reclamation Techniques', in Lal, R., Kimble, J., Follett, R., and Stewart, B. A. (eds.), Soil Processes and the Carbon Cycle, Adv. Soil Sci. CRC Press, Inc., Boca Raton, FL, pp. 369–386.Google Scholar
  39. Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., and Townley-Smith, L.: 1992, 'Lightfraction Organic Matter in Soil from Long-Term Rotations', Soil Sci. Soc. Am. J. 56, 1799–1806.Google Scholar
  40. Janzen, H. H., Campbell, C. A., Izaurralde, R. C., Ellert, B. H., Juma, N., McGill, W. B., and Zentner, R. P.: 1998, 'Management Effects on Soil C Storage on the Canadian Prairies, Soil Till. Res. 47, 181–195.Google Scholar
  41. Jenkinson, D. S.: 1990, 'The Turnover of Organic Carbon and Nitrogen in Soil', Philos. Trans. R. Soc. London Ser. B 329, 361–368.Google Scholar
  42. Kern, J. S., Turner, D. P., and Dodson, R. F.: 1998, 'Spatial Patterns in Soil Organic Carbon Pool Size in the Northwestern United States', in Lal, R., Follett, R., and Stewart, B. A. (eds.), Soil Processes and the Carbon Cycle, Adv. Soil Sci., CRC Press, Inc., Boca Raton, Fla., pp. 29–44.Google Scholar
  43. Klute, A. (ed.): 1986, 'Methods of Soil Analysis', Part 1: Agronomy Monograph No. 9, American Society of Agronomy, Madison, WI.Google Scholar
  44. Kral, D. M., and Hawkins, S. L. (eds.): 1994, 'Erosion and Productivity of Soils Containing Rock Fragments', SSSA Special Public No. 13, p. 103.Google Scholar
  45. Lacelle, B., Waltman, S., Bliss, N., and Orozco-Chavez, F.: 1999, 'The Methods Used to Create the North American Soil Organic Carbon Digital Database', in Lal, R., Kimble, J., and Follett, R. (eds.), An International Workshop on Assessment Methods for Soil C Pools. Ann Harbor Press (in review).Google Scholar
  46. Laflen, J. M., Lane, L. J., and Foster, G. R.: 1991, 'WEPP: A New Generation of Erosion Prediction Technology', J. Soil Water Conserv. 46, 34–38.Google Scholar
  47. Lal, R. (ed.): 1994, 'Soil Erosion Research Methods', 2nd edn., Soil Water Conservation Society, St. Lucie Press, Delray Beach, FL. p. 340.Google Scholar
  48. Levine, E. R. and Kimes, D.: 1998, 'Predicting Soil Carbon in Mollisols Using Neural Networks', in Lal, R., Kimble, J., Follett, R., and Stewart, B. A. (eds.), Soil Processes and the Carbon Cycle. Adv. Soil Sci. CRC Press, Inc., Boca Raton, FL, pp. 473–484.Google Scholar
  49. Li, C., Frolking, S., and Harriss, R.: 1994, 'Modeling Carbon Biogeochemistry in Agricultural Soils', Global Biogeochem. Cycles 8, 237–254.Google Scholar
  50. Loveland, T. R, Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: 1999, 'Development of a Global Land Cover Characteristics Data98 base and IGBP DISCover from 1-km AVHRR Data', Int. J. Remote Sens., in press, http://edcwww.cr.usgs.gov/landdaac/glcc/tablambert_na.htmlGoogle Scholar
  51. Magdoff, F. R., Tabatabai, M. A. and Hanlon Jr., E. A. (eds.): 1996, 'Soil Organic Matter: Analysis and Interpretation', SSSA Special Public No. 46, p. 67.Google Scholar
  52. Mann, L. K.: 1986, 'Changes in Soil Carbon after Cultivation', Soil Sci. 142, 279–288.Google Scholar
  53. McGill, W. B.: 1996, 'Review and Classification of Ten Soil Organic Matter Models', in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets, Springer-Verlag, Heidelberg, pp. 111–132.Google Scholar
  54. McGill, W. B., Feng, Y. S., and Izaurralde, R. C.: 1996, 'Soil Organic Matter Dynamics: From Past Frustrations to Future Expectations', Soil Biology Symposium, Solo / Suelo 1996 XIII Congresso Latino Americano de Ciéncia do Solo, 4–8 August, Águas de Lindóia, Sao Paulo, Brazil.Google Scholar
  55. Mollitor, A. V., Leaf, A. L., and Morris, L. A.: 1980, 'Forest Soil Variability on Northeastern Flood Plains', Soil Sci. Soc. Am. J. 44, 617–620.Google Scholar
  56. NRCS (Natural Resources Conservation Service): 1994, 'State Soil Geographic (STATSGO) Data Base-Data Use Information', Ft. Worth, Texas, U.S. Department of Agriculture, Natural Resources Conservation Service, Miscellaneous publication number 1492 (revised edition, variously paged).Google Scholar
  57. NRCS (Natural Resources Conservation Service): 1995, 'Soil Survey Geographic (SSURGO) Data Base – Data Use Information', Ft. Worth, Texas, U.S. Department of Agriculture, Natural Resources Conservation Service, Miscellaneous Publication Number 1527 (variously paged).Google Scholar
  58. Oades, J. M.: 1993, 'The Role of Biology in the Formation, Stabilization and Degradation of Soil Structure', Geoderma 56, 377–400.Google Scholar
  59. Parkinson, D. and Paul, E. A.: 1982, 'Microbial biomass', in Page, A. L., Miller, R. H., and Keeney, D. R. (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd edn., Agronomy Monograph No. 9, ASA-SSSA, Madison, WI, pp. 821–830.Google Scholar
  60. Parton, W. J., Stewart, J. W. B., and Cole, C. V.: 1988, 'Dynamics of C, N, P and S in Grassland Soils: A Model', Biogeochemistry 5, 109–131.Google Scholar
  61. Parton, W. J., Ojima, D. S., and Schimel, D. S.: 1995, 'Models to Evaluate Soil Organic Matter Storage and Dynamics', in Carter, M. R. and Stewart, B. A. (eds.), Structure and Organic Matter Storage in Agricultural Soils, Adv. Soil Sci., CRC Press, Lewis Publishers, New York, pp. 421–448.Google Scholar
  62. Paul, E. A., Paustian, K., Elliot, E. T., and Cole, C. V. (eds.): 1997, Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, CRC Press, Boca Raton, FL.Google Scholar
  63. Paustian, K., Levine, E., Post, W. M., and Ryzhova, I. R.: 1997, 'The Use of Models to Integrate Information and Understanding of Soil C at the Regional Scale', Geoderma 79, 227–260.Google Scholar
  64. Peterson, G. A., Halvorson, A. D., Havlin, J. L., Jones, O. R., Lyon, D. J., and Tanaka, D. L.: 1998, 'Reduced Tillage and Increasing Cropping Intensity in the Great Plains Conserves Soil C', Soil Till. Res. 47, 207–218.Google Scholar
  65. Post, W.M., Pastor, J., Zinke, P. J., and Stangenberger, A. G.: 1985, 'Global of Soil Nitrogen', Nature 317, 613–616.Google Scholar
  66. Post, W. M. and Kwon, K. C.: 2000, 'Soil Carbon Sequestration and Land-Use Change: Processes and Potential', Global Change Biol. 6, 317–327.Google Scholar
  67. Rasmussen, P. E., Albrecht, S. L., and Smiley, R.W.: 1998, 'Soil C and N Changes under Tillage and Cropping Systems in Semi-Arid Pacific Northwest Agriculture', Soil Till. Res. 47, 197–205.Google Scholar
  68. Renard, K. G., Foster, G. R., Weesies, G. A., and Porter, J. P.: 1991, 'RUSLE: Revised Universal Soil Loss Equation', Journal Soil Water Conservation 46, 30–33.Google Scholar
  69. Rice, C. W. and Garcia, F. O.: 1994, 'Biologically Active Pools of Soil C and N in Tallgrass Prarie, in Doran, J. (ed.), Defining Soil Quality for a Sustainable Environment, Special Publication No. 35, Soil Science Society of America, Madison, WI.Google Scholar
  70. Schmidt, E. L. and Paul, E. A.: 1982, 'Microscope Methods for Soil Microorganisms', in Page, A. L., Miller, R. H., and Keeney, D. R. (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Agronomy Monograph No. 9, 2nd edn., ASA-SSSA, Madison, WI, pp. 803–814.Google Scholar
  71. Schnitzer, M.: 1982, 'Organic matter characterization', in Page, A. L., Miller, R. H., and Keeney, D. R. (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agronomy Monograph No. 9, 2nd edn., ASA-SSSA, Madison, WI, pp. 81–594.Google Scholar
  72. Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Colello, G. D., and Bounoua, L.: 1996, 'A Revised Land-Surface Parameterization (SiB2) for GCMs, Part 1: Model formulation', J. Clim. 5, 676–705.Google Scholar
  73. Smith, P., Powlson, D., and Glendining, M.: 1996, 'Establishing a European GCTE Soil Matter Network (SOMNET)', in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets, NATO ASI Series, Vol. 38, Springer-Verlag, Berlin, pp. 81–97.Google Scholar
  74. Smith, P., Powlson, D. S., Smith, J. U., and Elliott, E. T. (eds.): 1997, 'Evaluation and Comparison of Soil Organic Matter Models', Geoderma 81, 1–225.Google Scholar
  75. Sombroek, W. G., Nachtergaele, F. O., and Hebel, A.: 1993, 'Amounts, Dynamics and Sequestration of Carbon in Tropical and Subtropical Soils', Ambio 22, 417–426.Google Scholar
  76. Sparks, D. L. 1996, Methods of Soil Analysis, Part 3: Chemical Methods, Soil Science Society of America Book Series 5, Madison, WI.Google Scholar
  77. Spycher, G., Sollins, P., and Rose, S.: 1983, 'Carbon and Nitrogen in the Light Fraction of a Forest Soil: Vertical Distribution and Seasonal Patterns', Soil Sci. 135, 79–87.Google Scholar
  78. Tarnocai, C. and Ballard, M.: 1994, 'Organic Carbon in Canadian Soils', in Lal, R., Kimble, J., and Levine, E. (eds.), Soil Processes and Greenhouse Effect, USDA, Soil Conservation Service, National Soil Survey Center, Lincoln, NE, pp. 31–45.Google Scholar
  79. Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: 1987, 'An Extraction Method for Measuring Soil Microbial Biomass', Soil Biol. Biochem. 19, 703–707.Google Scholar
  80. USDA-NRCS (United States Department of Agriculture, Natural Resources Conservation Service): 1996, Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 3.0, U.S. Government Printing Office, Washington, D.C.Google Scholar
  81. Verma, S. B.: 1990, 'Micrometeorological Methods for Measuring Surface Fluxes of Mass and Energy', in Goel, N. S. and Norman, J. M. (eds.), Instrumentation for Studying Vegetation Canopies for Remote Sensing in Optical and Thermal Infared Regions, Special Issue, Remote Sens. Rev. 5, 99–115.Google Scholar
  82. Vogelmann, J. E., Sohl, T., and Howard, S. M.: 1998, 'Regional Characterization of Land Cover Using Multiple Sources of Data', Photogrammetric Engineer. Remote Sens. 64, 45–57.Google Scholar
  83. Weaver, R. W., Angle, J. S., and Bottomly, P. S.: 1994, Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties, Soil Science Society of America Book Series 5, Madison, WI.Google Scholar
  84. Wilding, L. P. and Drees, L. R.: 1983, 'Spatial Variability and Pedology', in Wilding, L. P., Smeck, N. W. and Hall, G. F. (eds.), Pedogenesis and Soil Taxonomy, I: Concepts and Interactions, Elsevier, pp. 83–116.Google Scholar
  85. Williams, J. R.: 1995, 'The EPIC model', in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Res. Public., Highlands Ranch, CO, pp. 909–1000.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • W. M. Post
    • 1
  • R. C. Izaurralde
    • 2
  • L. K. Mann
    • 1
  • N. Bliss
    • 3
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Pacific Northwest National LaboratoryWashingtonUSA
  3. 3.EROS Data CenterSioux FallsU.S.A

Personalised recommendations